A228568 a(n) = 2^n*A056236(n).
2, 8, 48, 320, 2176, 14848, 101376, 692224, 4726784, 32276480, 220397568, 1504968704, 10276569088, 70172803072, 479169871872, 3271976550400, 22342453428224, 152563815022592, 1041770892754944, 7113656621858816, 48575085832830976, 331691433687777280
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence T_2.
- Index entries for linear recurrences with constant coefficients, signature (8,-8).
Programs
-
PARI
Vec(2*(1-4*x)/(1-8*x+8*x^2) + O(x^50)) \\ Colin Barker, Mar 16 2016
Formula
G.f.: 2*( 1-4*x ) / ( 1-8*x+8*x^2 ).
a(n) = 2*A084130(n).
From Colin Barker, Mar 16 2016: (Start)
a(n) = ((4-2*sqrt(2))^n+(2*(2+sqrt(2)))^n).
a(n) = 8*a(n-1)-8*a(n-2) for n>1.
(End)
Comments