A228571 The backwards antidiagonal sums of triangle A228570.
1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 4, 7, 6, 10, 10, 14, 15, 20, 24, 30, 35, 45, 53, 69, 79, 104, 120, 157, 184, 236, 281, 356, 431, 540, 656, 821, 1001, 1252, 1525, 1908, 2328, 2909, 3557, 4434, 5436, 6762
Offset: 0
Programs
-
Maple
f := x -> (1/((1-x^2-x^5)) + (1+x^2+x^5)/(1-x^4-x^10))/2 : seq(coeff(series(f(x), x, n+1), x, n), n=0..50); # End first program a := proc(n): (A001687(n+1) + x(n) + x(n-2) + x(n-5))/2 end: A001687 := proc(n) option remember: if n=0 then 0 elif n=1 then 1 elif n=2 then 0 elif n=3 then 1 elif n=4 then 0 else procname(n-2) + procname(n-5) fi: end: x := proc(n) local x: if n <0 then return(0) fi: if type(n, even) then A001687((n+2)/2) else 0 fi: end: seq(a(n), n=0..50); # End second program
Formula
a(n) = sum(A228570(n-k, n-2*k), k=0..floor(n/2)).
G.f.: (1/2)*(1/(1-x^2-x^5) + (1+x^2+x^5)/(1-x^4-x^10)).
Comments