cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228571 The backwards antidiagonal sums of triangle A228570.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 4, 7, 6, 10, 10, 14, 15, 20, 24, 30, 35, 45, 53, 69, 79, 104, 120, 157, 184, 236, 281, 356, 431, 540, 656, 821, 1001, 1252, 1525, 1908, 2328, 2909, 3557, 4434, 5436, 6762
Offset: 0

Views

Author

Johannes W. Meijer, Aug 26 2013

Keywords

Comments

The a(n) equal the backwards antidiagonal sums of triangle A228570.

Crossrefs

Programs

  • Maple
    f := x -> (1/((1-x^2-x^5)) + (1+x^2+x^5)/(1-x^4-x^10))/2 : seq(coeff(series(f(x), x, n+1), x, n), n=0..50);  # End first program
    a := proc(n): (A001687(n+1) + x(n) + x(n-2) + x(n-5))/2 end: A001687 := proc(n) option remember: if n=0 then 0 elif n=1 then 1 elif n=2 then 0 elif n=3 then 1 elif n=4 then 0 else procname(n-2) + procname(n-5) fi: end: x := proc(n) local x: if n <0 then return(0) fi: if type(n, even) then A001687((n+2)/2) else 0 fi: end: seq(a(n), n=0..50); # End second program

Formula

a(n) = sum(A228570(n-k, n-2*k), k=0..floor(n/2)).
G.f.: (1/2)*(1/(1-x^2-x^5) + (1+x^2+x^5)/(1-x^4-x^10)).