cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228574 Determinant of the 2*n X 2*n matrix with (i,j)-entry equal to 1 or 0 according as i + j is a prime congruent to 1 mod 4 or not.

Original entry on oeis.org

0, 1, 0, 1, 0, 16, 0, 1, 0, 1, 0, 6561, 0, 0, 0, 0, 0, 0, 0, 6561, 0, 456976, 0, 65536, 0, 84934656, 0, 12745506816, 0, 335563778560000, 0, 1105346784523536, 0, 441194850625, 0, 986262467993856, 0, 80385880645971214336, 0, 6387622009837971841
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 25 2013

Keywords

Comments

For the (2*n-1) X (2*n-1) determinant with (i,j)-entry equal to 1 or 0 according as i + j is a prime congruent to 1 mod 4 or not, it is easy to see that it vanishes since sum_{i=1}^{2*n-1} (i + tau(i) - 1) is not a multiple of 4 for any permutation tau of {1,...,2n-1}.
Conjecture: a(2*n-1) = 0 for all n > 0, and a(2*n) is nonzero when n > 9.
Zhi-Wei Sun could prove the following related result:
Let m be any positive even integer, and let D(m, n) denote the n X n determinant with (i,j)-entry equal to 1 or 0 according as i + j is a prime congruent to 1 mod m or not. Then (-1)^{n*(n-1)/2}*D(m,n) is always an m-th power. (It is easy to see that D(m,n) = 0 if m does not divide n^2.)

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[Mod[i+j,4]==1&&PrimeQ[i+j]==True,1,0],{i,1,2n},{j,1,2n}]]
    Table[a[n],{n,1,20}]