This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228594 #20 Oct 31 2021 07:46:29 %S A228594 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0, %T A228594 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,2,0,0,0,0,0, %U A228594 0,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A228594 Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0. %C A228594 Row lengths are specified in A228726. %H A228594 Christopher Hunt Gribble, <a href="/A228594/b228594.txt">Rows 1..34 flattened</a> %H A228594 Christopher Hunt Gribble, <a href="/A228594/a228594.cpp.txt">C++ program</a> %e A228594 T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors. The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube). The partitions and isolated nodes can be illustrated by expanding into 2 dimensions: %e A228594 ._______. ._______. ._______. ._______. ._______. %e A228594 | | | | . | . | | | | | . | . | | | | %e A228594 |___|___| |___|___| |___|___| |___|___| |___|___| %e A228594 | | | | . | . | | | | | . | . | | | | %e A228594 |___|___| |___|___| |___|___| |___|___| |___|___| %e A228594 ._______. ._______. ._______. ._______. ._______. %e A228594 | |_| | . . |_| | . . |_| | |_| |_|_|_|_| %e A228594 | |_| | . . |_| | . . |_| | |_| |_|_|_|_| %e A228594 |_____|_| |_____|_| |_____|_| |_____|_| |_|_|_|_| %e A228594 |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| %e A228594 . %e A228594 The irregular triangle begins: %e A228594 u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... %e A228594 n k r %e A228594 1,1,1 1 %e A228594 2,1,1 1 %e A228594 2,2,1 1 %e A228594 2,2,2 1 1 %e A228594 3,1,1 1 %e A228594 3,2,1 1 %e A228594 3,2,2 1 1 %e A228594 3,3,1 1 %e A228594 3,3,2 1 1 %e A228594 3,3,3 1 1 0 0 0 0 0 0 1 %e A228594 4,1,1 1 %e A228594 4,2,1 1 %e A228594 4,2,2 1 1 1 %e A228594 4,3,1 1 %e A228594 4,3,2 1 1 1 %e A228594 4,3,3 1 1 1 0 0 0 0 0 1 %e A228594 4,4,1 1 %e A228594 4,4,2 1 1 1 1 1 %e A228594 4,4,3 1 1 1 1 1 0 0 0 1 %e A228594 4,4,4 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 ... %e A228594 5,1,1 1 %e A228594 5,2,1 1 %e A228594 5,2,2 1 1 1 %e A228594 5,3,1 1 %e A228594 5,3,2 1 1 1 %e A228594 5,3,3 1 1 1 0 0 0 0 0 1 1 %e A228594 5,4,1 1 %e A228594 5,4,2 1 1 1 1 1 %e A228594 5,4,3 1 1 1 1 1 0 0 0 1 1 1 %e A228594 5,4,4 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 0 0 ... %e A228594 5,5,1 1 %e A228594 5,5,2 1 1 1 1 1 %e A228594 5,5,3 1 1 1 1 1 0 0 0 1 1 1 1 %e A228594 5,5,4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 ... %Y A228594 Row sums = A228202(n,k,r). %Y A228594 Cf. A225542. %K A228594 nonn,tabf %O A228594 1,63 %A A228594 _Christopher Hunt Gribble_, Aug 27 2013