cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228599 The Wiener index of the graph obtained by applying Mycielski's construction to the rooted tree having Matula-Goebel number n.

This page as a plain text file.
%I A228599 #13 May 28 2018 06:04:12
%S A228599 5,15,33,33,62,62,59,59,103,103,103,99,99,99,156,93,99,151,93,152,152,
%T A228599 156,151,144,221,151,215,147,152,216,156,135,221,152,217,207,144,144,
%U A228599 216,209,151,211,147,217,292,215,216,197,213,293,217,211
%N A228599 The Wiener index of the graph obtained by applying Mycielski's construction to the rooted tree having Matula-Goebel number n.
%C A228599 The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%C A228599 a(2^n) = A228318(n). Indeed, the rooted tree corresponding to the Matula-Goebel number 2^n is the star graph K(1,n).
%C A228599 a(A007097(n)) = A228321(n). Indeed, A007097(n) for n=1,2,... yields the primeth recurrence sequence (A007097(1)=2, A007097(n+1)=A007097(n)-th prime; first few terms are 2,3,5,11,31,127,709). The corresponding rooted trees are the path trees on n+1 vertices.
%D A228599 D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
%H A228599 R. Balakrishnan, S. F. Raj, <a href="http://dx.doi.org/10.7151/dmgt.1509">The Wiener number of powers of the Mycielskian</a>, Discussiones Math. Graph Theory, 30, 2010, 489-498 (see Theorem 2.1).
%H A228599 E. Deutsch, <a href="http://dx.doi.org/10.1016/j.dam.2012.05.012">Rooted tree statistics from Matula numbers</a>, Discrete Appl. Math., 160, 2012, 2314-2322.
%H A228599 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A228599 In Balakrishnan et al. one proves that the Wiener index of the Mycielskian of a connected graph G is 6V^2 - V - 7E - 4p(2) - p(3), where V is number of vertices of G, E is number of edges in G, and p(i) is number of pairs of vertices in G which are at distance i. For the rooted tree with Matula-Goebel number n these quantities can be found in A061775, A196050, and A196059.
%p A228599 with(numtheory): V := proc (n) local u, v: u := proc (n) options operator, arrow: op(1, factorset(n)) end proc: v := proc (n) options operator, arrow: n/u(n) end proc: if n = 1 then 1 elif isprime(n) then 1+V(pi(n)) else V(u(n))+V(v(n))-1 end if end proc: WP := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(WP(pi(n))+x*R(pi(n))+x)) else sort(expand(WP(r(n))+WP(s(n))+R(r(n))*R(s(n)))) end if end proc: p2 := proc (n) options operator, arrow: coeff(WP(n), x, 2) end proc: p3 := proc (n) options operator, arrow: coeff(WP(n), x, 3) end proc: a := proc (n) options operator, arrow: 6*V(n)^2-8*V(n)+7-4*p2(n)-p3(n) end proc: seq(a(n), n = 1 .. 80);
%Y A228599 Cf. A061775, A196050, A196059, A228318, A007097, A228321
%K A228599 nonn
%O A228599 1,1
%A A228599 _Emeric Deutsch_, Aug 29 2013