This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228607 #28 Jan 05 2025 19:51:40 %S A228607 54,9450,286679250,263199759084281250, %T A228607 221721055245240563933498289550781250, %U A228607 157320497971930517299046640166039915248640240419548633694648742675781250 %N A228607 a(n) is the number of independent vertex subsets (i.e., the Merrifield-Simmons index) of the triangulane T[n] defined in the Khalifeh et al. and Deutsch et al. references. %D A228607 R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 161-162. %H A228607 Emeric Deutsch, <a href="/A228607/b228607.txt">Table of n, a(n) for n = 1..9</a> %H A228607 E. Deutsch, S. Klavzar, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match70/n2/match70n2_627-644.pdf">Computing the Hosoya polynomial of graphs from primary subgraphs</a>, MATCH Commun. Math. Comput. Chem., 70, 2013, 627-644. %H A228607 M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, <a href="http://nopr.niscair.res.in/handle/123456789/2215">Computing Wiener and Kirchhoff indices of a triangulane</a>, Indian J. Chemistry, 47A, 2008, 1503-1507. %H A228607 H. Prodinger and R. F. Tichy, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-1/prodinger.pdf">Fibonacci numbers of graphs</a>, Fibonacci Quarterly, 20, 1982, 16-21. %H A228607 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triangulane">Triangulane</a> %F A228607 a(n) = d(n)^3 + 3*c(n)*d(n)^2, where c(1) = 1, d(1) = 3, c(n) = d(n-1)^2, d(n) = 2*c(n-1)*d(n-1) + d(n-1)^2 for n>=2. %F A228607 If we replace the initial conditions for c and d by c[1] = x and d[1] = 1 + 2x, respectively, and the first equation by c[n] = x*d[n-1]^2, then a(n) will yield the independence polynomial of the triangulane T(n). For example, for n=2 one finds 1 + 21x + 180x^2 + 816x^3 + 2112x^4 + 3120x^5 + 2432x^6 + 768x^7 (checked with the Maple Graph Theory package). %F A228607 d(n) = A338293(n+1). - _R. J. Mathar_, Jul 22 2022 %p A228607 c[1] := 1: d[1] := 3: for n from 2 to 10 do c[n] := d[n-1]^2; d[n] := 2*c[n-1]*d[n-1]+d[n-1]^2 end do: seq(d[n]^3+3*c[n]*d[n]^2, n = 1 .. 7); %K A228607 nonn %O A228607 1,1 %A A228607 _Emeric Deutsch_, Dec 17 2013