cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228609 Partial sums of the cubes of the tribonacci sequence A000073.

This page as a plain text file.
%I A228609 #28 Jan 05 2025 19:51:40
%S A228609 0,1,2,10,74,417,2614,16438,101622,633063,3941012,24511836,152535900,
%T A228609 949133883,5905611508,36746590964,228646935796,1422699232325,
%U A228609 8852413871022,55082039340022,342734883853750,2132586518002125
%N A228609 Partial sums of the cubes of the tribonacci sequence A000073.
%D A228609 R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
%H A228609 Michael De Vlieger, <a href="/A228609/b228609.txt">Table of n, a(n) for n = 0..1261</a>
%H A228609 H. Ohtsuka, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Problems/May2013advanced.pdf">Advanced Problems and Solutions</a>, Fib. Quart. 51 (2) (2013) 186, H-736.
%H A228609 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,25,-58,26,-42,54,-13,1,-3,1).
%F A228609 a(n) = a(n-1) + (A000073(n))^3.
%F A228609 G.f.: x*(-1+3*x+11*x^3-5*x^4+x^5-3*x^6+x^7+5*x^2) / ( (x^3-5*x^2+7*x-1) *(x^6+4*x^5+11*x^4+12*x^3+11*x^2+4*x+1) *(x-1)^2 )
%t A228609 CoefficientList[Series[x (-1 + 3 x + 11 x^3 - 5 x^4 + x^5 - 3 x^6 + x^7 + 5 x^2)/((x^3 - 5 x^2 + 7 x - 1) (x^6 + 4 x^5 + 11 x^4 + 12 x^3 + 11 x^2 + 4 x + 1) (x - 1)^2), {x, 0, 21}], x] (* _Michael De Vlieger_, Jan 12 2022 *)
%t A228609 Accumulate[LinearRecurrence[{1,1,1},{0,1,1},30]^3]  (* or *) LinearRecurrence[ {5,5,25,-58,26,-42,54,-13,1,-3,1},{0,1,2,10,74,417,2614,16438,101622,633063,3941012},30] (* _Harvey P. Dale_, Sep 11 2022 *)
%o A228609 (PARI) T(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
%o A228609 a(n) = sum(k=1, n, T(k)^3); \\ _Michel Marcus_, Jan 12 2022
%Y A228609 Cf. A000073, A107239.
%K A228609 easy,nonn
%O A228609 0,3
%A A228609 _R. J. Mathar_, Dec 18 2013