This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228650 #17 Jul 30 2022 08:19:14 %S A228650 6,8,11,12,46,57,66,120,121,145,156,162,166,217,372,386,557,596,638, %T A228650 750,866,1025,1038,1201,1396,1857,2042,2081,2146,2263,2301,2452,2836, %U A228650 2900,2926,2991,3026,3053,3288,3368,3963,3970,4511,4656,5006,5492,5890,5952 %N A228650 Numbers k such that if an urn contains k balls, with at least one each of three colors, there exists a combination of the three colors such that it is equally probable for three balls randomly selected from the urn to all be either the same color or distinct colors. %C A228650 If the urn contains 596 balls, there exist two inequivalent combinations with the desired property, {86, 246, 264} and {126, 154, 316}. %C A228650 The analogous sequence for two colors are the square numbers > 1 (A000290 with first two terms truncated). %e A228650 46 is a member of the sequence because if the urn contains 6 red, 18 green and 22 blue balls, then there are 6 * 18 * 22 = 2376 selections of three balls with distinct colors, and ((6 * 5 * 4) + (18 * 17 * 16) + (22 * 21 * 20)) / 3! = 2376 selections of three balls all the same color, and 6 + 18 + 22 = 46. %o A228650 (Pascal) program a228650; %o A228650 var %o A228650 p: array[1..6000] of int64; %o A228650 b1, b2, b3, k: int64; %o A228650 n, s: integer; %o A228650 begin %o A228650 k:=0; %o A228650 repeat %o A228650 inc(k); %o A228650 p[k] := (k * (k - 1) * (k - 2)) div 6; %o A228650 until k = 6000; %o A228650 n := 0; k := 2; %o A228650 repeat %o A228650 inc(k); s := 0; %o A228650 b1 := 0; %o A228650 repeat %o A228650 inc(b1); %o A228650 b2 := b1 - 1; %o A228650 b3 := k - (b1 + b2); %o A228650 repeat %o A228650 inc(b2); dec(b3); %o A228650 if (b3 >= b2) and (b1 * b2 * b3 = p[b1] + p[b2] + p[b3]) then %o A228650 begin %o A228650 inc(n); inc(s); %o A228650 writeln(n,' ',k); %o A228650 end; %o A228650 until (b3 <= b2) or (s > 0); %o A228650 until (3 * b1 >= k) or (s > 0); %o A228650 until k = 6000; %o A228650 end. %Y A228650 Cf. A228651, A228652, A228653. %K A228650 nonn %O A228650 1,1 %A A228650 _William Rex Marshall_, Aug 29 2013