A228658 Number of n X 6 binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.
8, 80, 968, 11148, 128740, 1482892, 17074988, 196565912, 2262692928, 26045341080, 299798763232, 3450863834052, 39721453897148, 457216814726132, 5262827734777604, 60578160174884624, 697289282211813816
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1..0..0..1....1..0..1..0..1..0....1..0..1..0..0..1....1..0..0..0..0..1 ..1..0..0..0..0..1....0..0..0..0..1..0....0..0..1..0..0..0....0..0..0..1..0..0 ..1..0..0..1..0..1....0..0..1..0..0..0....1..0..1..0..0..0....0..0..0..0..0..1 ..1..0..0..0..0..1....1..0..1..0..1..0....0..0..1..0..1..0....0..0..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A228660.
Formula
Empirical: a(n) = 14*a(n-1) - 17*a(n-2) - 142*a(n-3) + 59*a(n-4) + 352*a(n-5) + 103*a(n-6) - 48*a(n-7).
Empirical g.f.: 4*x*(2 - 8*x - 4*x^2 + 23*x^3 + 3*x^4 - 8*x^5) / (1 - 14*x + 17*x^2 + 142*x^3 - 59*x^4 - 352*x^5 - 103*x^6 + 48*x^7). - Colin Barker, Sep 12 2018