cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A228654 Number of n X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

1, 2, 34, 416, 24109, 1482892, 337258048, 99770848656, 92600434253746, 128571982215641568, 497887042842429868023, 3189515020018986830642404, 52334113476786453501159739264, 1527284319716267796002249895255726
Offset: 1

Views

Author

R. H. Hardin Aug 29 2013

Keywords

Comments

Diagonal of A228660

Examples

			Some solutions for n=4
..1..0..0..0....1..0..0..1....1..0..0..1....1..0..0..0....1..0..1..0
..0..0..0..1....1..0..0..0....0..0..0..0....1..0..0..1....0..0..0..0
..0..0..0..1....0..0..0..1....0..0..0..0....1..0..0..1....1..0..1..0
..1..0..0..1....0..0..0..1....0..1..0..0....1..0..0..0....0..0..1..0
		

A228655 Number of nX3 binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

2, 8, 34, 140, 574, 2348, 9598, 39224, 160282, 654944, 2676202, 10935332, 44683222, 182581508, 746051878, 3048465200, 12456425842, 50898577976, 207978216754, 849826072316, 3472499977390, 14189087019740, 57978456949582
Offset: 1

Views

Author

R. H. Hardin Aug 29 2013

Keywords

Comments

Column 3 of A228660

Examples

			Some solutions for n=4
..1..0..0....1..0..1....1..0..1....1..0..0....1..0..1....1..0..0....1..0..1
..1..0..0....0..0..0....1..0..1....0..0..0....1..0..0....1..0..0....1..0..0
..0..0..1....0..0..0....0..0..0....0..1..0....1..0..1....1..0..0....1..0..0
..0..0..1....1..0..0....0..0..1....0..1..0....0..0..0....1..0..1....0..0..1
		

Formula

Empirical: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3).
Empirical: G.f. -2*x*(-1+x) / ( 1-5*x+3*x^2+3*x^3 ). - R. J. Mathar, Aug 29 2013

A228656 Number of nX4 binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

3, 14, 78, 416, 2228, 11912, 63688, 340480, 1820208, 9730784, 52020448, 278099456, 1486709568, 7947894912, 42489154688, 227145461760, 1214311301888, 6491663650304, 34704195603968, 185527355908096, 991822435038208
Offset: 1

Views

Author

R. H. Hardin Aug 29 2013

Keywords

Comments

Column 4 of A228660

Examples

			Some solutions for n=4
..1..0..1..0....1..0..0..0....1..0..1..0....1..0..0..1....1..0..0..1
..1..0..0..0....0..0..0..0....1..0..0..0....1..0..0..1....1..0..0..0
..0..0..0..1....0..0..0..0....0..0..1..0....0..0..0..1....0..0..1..0
..0..1..0..1....1..0..1..0....1..0..0..0....1..0..0..0....1..0..0..0
		

Formula

Empirical: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3).
Empirical: G.f. -x*(-3+4*x) / ( 1-6*x+2*x^2+8*x^3 ). - R. J. Mathar, Aug 29 2013

A228657 Number of n X 5 binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

5, 38, 335, 2844, 24109, 203762, 1720343, 14516920, 122469941, 1033083774, 8714026943, 73500740436, 619954240797, 5229079954762, 44105207907655, 372009451809136, 3137746452123621, 26465592072488918, 223226285220003247
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..0..0..0....1..0..1..0..1....1..0..1..0..1....1..0..0..0..1
..1..0..1..0..1....1..0..1..0..1....1..0..1..0..0....1..0..0..0..0
..1..0..0..0..1....0..0..0..0..0....1..0..0..0..0....0..0..0..0..1
..1..0..1..0..1....0..0..0..0..1....1..0..0..0..0....0..0..0..0..0
		

Crossrefs

Column 5 of A228660.

Formula

Empirical: a(n) = 12*a(n-1) - 27*a(n-2) - 32*a(n-3) + 49*a(n-4) + 20*a(n-5) - 5*a(n-6).
Empirical g.f.: x*(5 - 22*x + 14*x^2 + 10*x^3 - 3*x^4) / (1 - 12*x + 27*x^2 + 32*x^3 - 49*x^4 - 20*x^5 + 5*x^6). - Colin Barker, Sep 12 2018

A228658 Number of n X 6 binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

8, 80, 968, 11148, 128740, 1482892, 17074988, 196565912, 2262692928, 26045341080, 299798763232, 3450863834052, 39721453897148, 457216814726132, 5262827734777604, 60578160174884624, 697289282211813816
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..1..0..0..1....1..0..1..0..1..0....1..0..1..0..0..1....1..0..0..0..0..1
..1..0..0..0..0..1....0..0..0..0..1..0....0..0..1..0..0..0....0..0..0..1..0..0
..1..0..0..1..0..1....0..0..1..0..0..0....1..0..1..0..0..0....0..0..0..0..0..1
..1..0..0..0..0..1....1..0..1..0..1..0....0..0..1..0..1..0....0..0..0..1..0..1
		

Crossrefs

Column 6 of A228660.

Formula

Empirical: a(n) = 14*a(n-1) - 17*a(n-2) - 142*a(n-3) + 59*a(n-4) + 352*a(n-5) + 103*a(n-6) - 48*a(n-7).
Empirical g.f.: 4*x*(2 - 8*x - 4*x^2 + 23*x^3 + 3*x^4 - 8*x^5) / (1 - 14*x + 17*x^2 + 142*x^3 - 59*x^4 - 352*x^5 - 103*x^6 + 48*x^7). - Colin Barker, Sep 12 2018

A228659 Number of nX7 binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

13, 194, 3556, 62368, 1096624, 19236832, 337258048, 5910459096, 103561279328, 1814380139952, 31785935283840, 556837728488064, 9754730426036000, 170882696555044928, 2993497165464775680, 52439495408779417216
Offset: 1

Views

Author

R. H. Hardin Aug 29 2013

Keywords

Comments

Column 7 of A228660

Examples

			Some solutions for n=4
..1..0..0..0..0..0..1....1..0..0..0..0..0..1....1..0..0..0..0..1..0
..0..0..0..0..0..0..1....0..0..1..0..1..0..0....0..0..0..0..0..0..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....1..0..0..0..0..0..0
..0..0..1..0..0..0..1....0..0..1..0..0..0..1....1..0..1..0..0..1..0
		

Formula

Empirical: a(n) = 30*a(n-1) -226*a(n-2) -108*a(n-3) +4324*a(n-4) -1612*a(n-5) -27016*a(n-6) -2240*a(n-7) +50112*a(n-8) +20032*a(n-9) -16768*a(n-10) -4864*a(n-11) +2048*a(n-12)

A228661 Number of 2 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

2, 2, 8, 14, 38, 80, 194, 434, 1016, 2318, 5366, 12320, 28418, 65378, 150632, 346766, 798662, 1838960, 4234946, 9751826, 22456664, 51712142, 119082134, 274218560, 631464962, 1454120642, 3348515528, 7710877454, 17756424038, 40889056400
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Comments

Row 2 of A228660.
The recurrence is demonstrated as follows: For every 2X(n-1) array, we can add the column (0,0) to get an appropriate array of size 2Xn, and for every 2X(n-2) array, we can add the column (0,0) and either (1,0), (0,1) or (1,1) to get an appropriate sized array. Every admissible array is of one of these two forms, and these two forms do not overlap (since their last columns are different). - Tom Edgar, Aug 29 2013

Examples

			Some solutions for n=4
..1..0..1..0....1..0..0..0....1..0..0..1....1..0..0..0....1..0..1..0
..1..0..1..0....1..0..0..0....1..0..0..0....0..0..1..0....0..0..0..0
		

Formula

a(n) = a(n-1) +3*a(n-2).
G.f.: -2*x / ( -1+x+3*x^2 ). a(n) = 2*A006130(n-1). - R. J. Mathar, Aug 29 2013
a(n) = -2/13*sqrt(13)*(-1/2*sqrt(13)+1/2)^n + 2/13*sqrt(13)*(1/2*sqrt(13)+1/2)^n. - Tom Edgar, Aug 31 2013
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 3*x^2 + (2*k+3)*x - x*(2*k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013

A228662 Number of 3 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

4, 5, 34, 78, 335, 968, 3556, 11245, 38986, 127662, 433015, 1437072, 4833924, 16125205, 54068594, 180718798, 605223135, 2024416088, 6776576996, 22673534845, 75884451226, 253927226542, 849793486215, 2843728075552, 9516580935684
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..1..0....1..0..0..0....1..0..0..0....1..0..0..1....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0
..0..1..0..0....0..0..0..0....1..0..0..0....0..1..0..1....1..0..0..1
		

Crossrefs

Row 3 of A228660.

Formula

Empirical: a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3).
Empirical g.f.: x*(4 - 3*x) / (1 - 2*x - 6*x^2 + 5*x^3). - Colin Barker, Sep 12 2018

A228663 Number of 4 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

8, 12, 140, 416, 2844, 11148, 62368, 275708, 1420076, 6614240, 32897116, 156718796, 767930400, 3694025404, 17985757548, 86879470432, 421850136604, 2041379040012, 9900460336800, 47946203889788, 232416817429420, 1125924852017632
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..0..1....1..0..1..0....1..0..0..1....1..0..0..0....1..0..0..1
..0..0..0..0....0..0..0..0....1..0..0..1....0..0..1..0....0..0..0..0
..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..0....0..0..0..1
..0..1..0..0....1..0..0..0....0..0..0..0....1..0..0..1....1..0..0..0
		

Crossrefs

Row 4 of A228660.

Formula

Empirical: a(n) = 2*a(n-1) + 16*a(n-2) - 7*a(n-3) - 18*a(n-4).
Empirical g.f.: 4*x*(1 + x)*(2 - 3*x) / (1 - 2*x - 16*x^2 + 7*x^3 + 18*x^4). - Colin Barker, Sep 12 2018

A228664 Number of 5 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

16, 29, 574, 2228, 24109, 128740, 1096624, 6780585, 51990406, 344168764, 2516149353, 17192729316, 122982062328, 852741876277, 6038989672654, 42158071124804, 297183800090933, 2081125389730084, 14639300678885312
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..0..0....1..0..1..0....1..0..0..0....1..0..0..1....1..0..0..1
..0..0..0..0....0..0..1..0....0..0..0..0....1..0..0..0....1..0..0..0
..0..0..1..0....0..0..0..0....0..1..0..1....0..0..1..0....1..0..0..1
..0..0..1..0....0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0
..0..0..1..0....1..0..0..1....0..1..0..0....0..0..0..1....1..0..0..1
		

Crossrefs

Row 5 of A228660.

Formula

Empirical: a(n) = 4*a(n-1) + 34*a(n-2) - 76*a(n-3) - 134*a(n-4) + 258*a(n-5) + 45*a(n-6) - 102*a(n-7).
Empirical g.f.: x*(16 - 35*x - 86*x^2 + 162*x^3 + 29*x^4 - 66*x^5) / (1 - 4*x - 34*x^2 + 76*x^3 + 134*x^4 - 258*x^5 - 45*x^6 + 102*x^7). - Colin Barker, Sep 12 2018
Showing 1-10 of 12 results. Next