A228663 Number of 4 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.
8, 12, 140, 416, 2844, 11148, 62368, 275708, 1420076, 6614240, 32897116, 156718796, 767930400, 3694025404, 17985757548, 86879470432, 421850136604, 2041379040012, 9900460336800, 47946203889788, 232416817429420, 1125924852017632
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0..1....1..0..1..0....1..0..0..1....1..0..0..0....1..0..0..1 ..0..0..0..0....0..0..0..0....1..0..0..1....0..0..1..0....0..0..0..0 ..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..0....0..0..0..1 ..0..1..0..0....1..0..0..0....0..0..0..0....1..0..0..1....1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A228660.
Formula
Empirical: a(n) = 2*a(n-1) + 16*a(n-2) - 7*a(n-3) - 18*a(n-4).
Empirical g.f.: 4*x*(1 + x)*(2 - 3*x) / (1 - 2*x - 16*x^2 + 7*x^3 + 18*x^4). - Colin Barker, Sep 12 2018