A228664 Number of 5 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.
16, 29, 574, 2228, 24109, 128740, 1096624, 6780585, 51990406, 344168764, 2516149353, 17192729316, 122982062328, 852741876277, 6038989672654, 42158071124804, 297183800090933, 2081125389730084, 14639300678885312
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0..0....1..0..1..0....1..0..0..0....1..0..0..1....1..0..0..1 ..0..0..0..0....0..0..1..0....0..0..0..0....1..0..0..0....1..0..0..0 ..0..0..1..0....0..0..0..0....0..1..0..1....0..0..1..0....1..0..0..1 ..0..0..1..0....0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0 ..0..0..1..0....1..0..0..1....0..1..0..0....0..0..0..1....1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A228660.
Formula
Empirical: a(n) = 4*a(n-1) + 34*a(n-2) - 76*a(n-3) - 134*a(n-4) + 258*a(n-5) + 45*a(n-6) - 102*a(n-7).
Empirical g.f.: x*(16 - 35*x - 86*x^2 + 162*x^3 + 29*x^4 - 66*x^5) / (1 - 4*x - 34*x^2 + 76*x^3 + 134*x^4 - 258*x^5 - 45*x^6 + 102*x^7). - Colin Barker, Sep 12 2018