A228680 Number of n X 5 binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.
13, 97, 809, 6737, 56549, 475809, 4008817, 33795201, 284980061, 2403420097, 20270798553, 170971640209, 1442058561397, 12163101107393, 102590452275041, 865306832676993, 7298499493581101, 61559793235182241, 519231197740651273
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0..0....0..0..0..0..0....0..0..1..0..0....0..1..0..0..1 ..0..0..0..0..1....0..0..1..0..1....0..0..0..0..1....0..0..0..0..1 ..1..0..0..0..0....0..0..0..0..0....1..0..0..0..1....0..0..0..0..1 ..0..0..1..0..0....0..0..0..0..1....0..0..0..0..0....1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A228683.
Formula
Empirical: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6).
Empirical g.f.: -x*(-13+59*x+4*x^2-64*x^3-15*x^4+5*x^5) / ( 1-12*x+27*x^2+32*x^3-49*x^4-20*x^5+5*x^6 ). - R. J. Mathar, Sep 02 2013
Comments