cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228680 Number of n X 5 binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

13, 97, 809, 6737, 56549, 475809, 4008817, 33795201, 284980061, 2403420097, 20270798553, 170971640209, 1442058561397, 12163101107393, 102590452275041, 865306832676993, 7298499493581101, 61559793235182241, 519231197740651273
Offset: 1

Views

Author

R. H. Hardin, Aug 30 2013

Keywords

Comments

Column 5 of A228683.

Examples

			Some solutions for n=4:
..0..0..1..0..0....0..0..0..0..0....0..0..1..0..0....0..1..0..0..1
..0..0..0..0..1....0..0..1..0..1....0..0..0..0..1....0..0..0..0..1
..1..0..0..0..0....0..0..0..0..0....1..0..0..0..1....0..0..0..0..1
..0..0..1..0..0....0..0..0..0..1....0..0..0..0..0....1..0..0..0..0
		

Crossrefs

Cf. A228683.

Formula

Empirical: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6).
Empirical g.f.: -x*(-13+59*x+4*x^2-64*x^3-15*x^4+5*x^5) / ( 1-12*x+27*x^2+32*x^3-49*x^4-20*x^5+5*x^6 ). - R. J. Mathar, Sep 02 2013