cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228681 Number of n X 6 binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

21, 217, 2529, 28977, 333517, 3837761, 44171841, 508425617, 5852202757, 67361890809, 775372578689, 8924976046401, 102731553583965, 1182498825731233, 13611237290882689, 156673123529460833, 1803397245448244085
Offset: 1

Views

Author

R. H. Hardin, Aug 30 2013

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..1..0..0....0..0..0..1..0..0....1..0..1..0..1..0
..1..0..0..1..0..0....0..1..0..1..0..1....0..0..0..0..0..1....0..0..0..0..0..0
..0..0..0..0..0..1....0..0..0..0..0..1....1..0..0..0..0..0....1..0..1..0..0..0
..1..0..0..0..0..0....0..0..0..0..0..1....0..0..1..0..1..0....1..0..0..0..1..0
		

Crossrefs

Column 6 of A228683.

Formula

Empirical: a(n) = 14*a(n-1) - 17*a(n-2) - 142*a(n-3) + 59*a(n-4) + 352*a(n-5) + 103*a(n-6) - 48*a(n-7).
Empirical g.f.: x*(21 - 77*x - 152*x^2 + 242*x^3 + 407*x^4 + 55*x^5 - 48*x^6) / (1 - 14*x + 17*x^2 + 142*x^3 - 59*x^4 - 352*x^5 - 103*x^6 + 48*x^7). - Colin Barker, Sep 12 2018