A228683 T(n,k)=Number of nXk binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.
2, 3, 4, 5, 7, 8, 8, 19, 17, 16, 13, 40, 77, 41, 32, 21, 97, 216, 313, 99, 64, 34, 217, 809, 1152, 1277, 239, 128, 55, 508, 2529, 6737, 6160, 5215, 577, 256, 89, 1159, 8832, 28977, 56549, 32928, 21305, 1393, 512, 144, 2683, 28793, 152048, 333517, 475809, 176032
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0 ..0..1..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0 ..0..0..0..0....0..0..0..1....1..0..1..0....0..0..1..0....1..0..0..0 ..0..0..0..1....0..1..0..1....1..0..0..0....0..0..1..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1057
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]
Comments