cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228683 T(n,k)=Number of nXk binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 8, 19, 17, 16, 13, 40, 77, 41, 32, 21, 97, 216, 313, 99, 64, 34, 217, 809, 1152, 1277, 239, 128, 55, 508, 2529, 6737, 6160, 5215, 577, 256, 89, 1159, 8832, 28977, 56549, 32928, 21305, 1393, 512, 144, 2683, 28793, 152048, 333517, 475809, 176032
Offset: 1

Views

Author

R. H. Hardin Aug 30 2013

Keywords

Comments

Table starts
...2....3......5.......8........13.........21...........34............55
...4....7.....19......40........97........217..........508..........1159
...8...17.....77.....216.......809.......2529.........8832.........28793
..16...41....313....1152......6737......28977.......152048........699833
..32...99...1277....6160.....56549.....333517......2644336......17124415
..64..239...5215...32928....475809....3837761.....46125216.....419022831
.128..577..21305..176032...4008817...44171841....806190208...10258304689
.256.1393..87049..941056..33795201..508425617..14105294112..251170142257
.512.3363.355685.5030848.284980061.5852202757.246929287360.6150224353031

Examples

			Some solutions for n=4 k=4
..0..0..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..1..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..0....0..0..0..1....1..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..1....0..1..0..1....1..0..0..0....0..0..1..0....0..0..0..0
		

Crossrefs

Column 1 is A000079
Column 2 is A001333(n+1)
Diagonal is A067963
Row 1 is A000045(n+2)
Row 2 is A006130(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]