cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228708 Triangle T(n,k) read by rows: T(n,k) = number of permutations on 123...n with exactly one abc pattern and no aj pattern with j<=k, for n>=0, 0<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 6, 6, 2, 0, 0, 27, 27, 12, 3, 0, 0, 110, 110, 55, 19, 4, 0, 0, 429, 429, 229, 91, 27, 5, 0, 0, 1638, 1638, 912, 393, 136, 36, 6, 0, 0, 6188, 6188, 3549, 1614, 612, 191, 46, 7, 0, 0, 23256, 23256, 13636, 6447, 2601, 897, 257, 57, 8, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2013

Keywords

Comments

See Noonan-Zeilberger for precise definition.

Examples

			Triangle begins:
0
0,0
0,0,0
1,1,0,0
6,6,2,0,0
27,27,12,3,0,0
110,110,55,19,4,0,0
429,429,229,91,27,5,0,0
1638,1638,912,393,136,36,6,0,0
6188,6188,3549,1614,612,191,46,7,0,0
23256,23256,13636,6447,2601,897,257,57,8,0,0
...
		

Crossrefs

See A084249 for a curtailed version. See also A229158, A229160.
T(n, 1) = A003517(n+1). Cf. A001089.

Programs

  • PARI
    for(n=1,15, for(k=1,n-2,print1(binomial(2*n-k-1,n)-binomial(2*n-k-1,n+3)+binomial(2*n-2*k-2,n-k-4)-binomial(2*n-2*k-2,n-k-1)+binomial(2*n-2*k-3,n-k-4)-binomial(2*n-2*k-3,n-k-2)",")))

Formula

T(n, k) = C(2n-k-1, n) - C(2n-k-1, n+3) + C(2n-2k-2, n-k-4) - C(2n-2k-2, n-k-1) + C(2n-2k-3, n-k-4) - C(2n-2k-3, n-k-2).
T(n, n-2) = n-2, T(n, k) = T(n, k+1) + T(n-1, k-1) + T(n-k, 2).