This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228716 #27 Mar 12 2015 20:53:28 %S A228716 1,0,1,2,0,0,1,0,1,3,0,0,0,1,0,0,1,0,1,2,2,4,0,0,0,0,1,0,0,0,1,0,0,1, %T A228716 0,0,1,0,1,3,2,5,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0, %U A228716 1,2,2,2,4,2,3,3,6,0,0,0,0,0,0,1,0,0 %N A228716 Triangle read by rows in which row n lists the rows (including 0's) of the n-th section of the set of partitions (in colexicographic order) of any integer >= n. %C A228716 In other words, row n lists the rows of the last section of the set of partitions (in colexicographic order) of n. %C A228716 Row lengths is A006128. %C A228716 The number of zeros in row n is A006128(n-1). %C A228716 Rows sums give A138879. %C A228716 For more properties of the sections of the set of partitions of a positive integer see example. %C A228716 Positive terms give A230440. - _Omar E. Pol_, Oct 25 2013 %e A228716 Illustration of the 15 rows of the 7th section (including zeros) of the set of partitions of any integer >= 7 (hence this is also the last section of the set of partitions of 7). Note that the sum of the k-th column is equal to the number of parts >= k, therefore the first differences of the column sums give the number of occurrences of parts k in the section. The same for all sections of all positive integers, see below: %e A228716 ----------------------------- %e A228716 Column: 1 2 3 4 5 6 7 %e A228716 ----------------------------- %e A228716 Row | %e A228716 1 | 0, 0, 0, 0, 0, 0, 1; %e A228716 2 | 0, 0, 0, 0, 0, 1; %e A228716 3 | 0, 0, 0, 0, 1; %e A228716 4 | 0, 0, 0, 0, 1; %e A228716 5 | 0, 0, 0, 1; %e A228716 6 | 0, 0, 0, 1; %e A228716 7 | 0, 0, 1; %e A228716 8 | 0, 0, 0, 1; %e A228716 9 | 0, 0, 1; %e A228716 10 | 0, 0, 1; %e A228716 11 | 0, 1; %e A228716 12 | 3, 2, 2; %e A228716 13 | 5, 2; %e A228716 14 | 4, 3; %e A228716 15 | 7; %e A228716 ----------------------------- %e A228716 Sums: 19, 8, 5, 3, 2, 1, 1 -> Row 7 of triangle A207031. %e A228716 . | /| /| /| /| /| /| %e A228716 . |/ |/ |/ |/ |/ |/ | %e A228716 F.Dif: 11, 3, 2, 1, 1, 0, 1 -> Row 7 of triangle A182703. %e A228716 . %e A228716 Triangle begins: %e A228716 [1]; %e A228716 [0,1],[2]; %e A228716 [0,0,1],[0,1],[3]; %e A228716 [0,0,0,1],[0,0,1],[0,1],[2,2],[4]; %e A228716 [0,0,0,0,1],[0,0,0,1],[0,0,1],[0,0,1],[0,1],[3,2],[5]; %e A228716 [0,0,0,0,0,1],[0,0,0,0,1],[0,0,0,1],[0,0,0,1],[0,0,1],[0,0,1],[0,1],[2,2,2],[4,2],[3,3],[6]; %e A228716 [0,0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,1],[0,0,0,0,1],[0,0,0,1],[0,0,0,1],[0,0,1],[0,0,0,1],[0,0,1],[0,0,1],[0,1],[3,2,2],[5,2],[4,3],[7]; %Y A228716 Cf. A000041, A006128, A135010, A138121, A138879, A182703, A187219, A207031, A211992. %K A228716 nonn,tabf %O A228716 1,4 %A A228716 _Omar E. Pol_, Sep 02 2013