A228720 Number of partitions in the first n compositions of j, according with the ordering of A228525, if 1<=n<=2^(j-1).
1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15
Offset: 1
Keywords
Examples
For n = 13 there are only six partitions in the first 13 rows of the list of compositions of any integer >= 5, so a(13) = 6. --------------------------------------------------------- . | Compositions of j . | n a(n) A228354 | 1 2 3 4 5 --------------------------------------------------------- . 1 1 * 1 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1 2 2 * 2 2 2+1 2+1+1 2+1+1+1 3 2 1+2 1+2+1 1+2+1+1 4 3 * 4 3 3+1 3+1+1 5 3 1+1+2 1+1+2+1 6 4 * 6 2+2 2+2+1 7 4 1+3 1+3+1 8 5 * 8 4 4+1 9 5 1+1+1+2 10 5 2+1+2 11 5 1+2+2 12 6 * 12 3+2 13 6 1+1+3 14 6 2+3 15 6 1+4 16 7 * 16 5 ...
Formula
a(2^(n-1)) = A000041(n), n >= 1.
Comments