This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228730 #34 Nov 08 2022 01:41:26 %S A228730 0,1,2,3,4,5,6,16,17,27,28,38,39,49,50,51,15,7,26,18,37,29,48,40,59, %T A228730 42,13,9,24,20,35,31,46,53,58,8,14,19,25,30,36,41,47,52,69,32,12,10, %U A228730 23,21,34,43,45,54,57,44,11,22,33,55,56,65,66,75,76,85,86,95,96 %N A228730 Lexicographically earliest sequence of distinct nonnegative integers such that the sum of two consecutive terms is a palindrome in base 10. %C A228730 From _M. F. Hasler_, Nov 09 2013: (Start) %C A228730 At each step, choose the smallest number not occurring earlier and such that a(n+1)+a(n) are palindromes, for all n. %C A228730 Conjectured to be a permutation of the nonnegative integers. %C A228730 See A062932 where injectivity is replaced by monotonicity; the sequences differ from a(16)=15 on. %C A228730 This is an "arithmetic" analog to sequences A228407 and A228410, where instead of the sum, the union of the digits of subsequent terms is considered. (End) %H A228730 Paul Tek, <a href="/A228730/b228730.txt">Table of n, a(n) for n = 0..10000</a> (corrected by Michel Marcus, Jan 19 2019) %H A228730 Paul Tek, <a href="/A228730/a228730.txt">PERL program for this sequence</a> %e A228730 a(1) + a(2) = 3. %e A228730 a(2) + a(3) = 5. %e A228730 a(3) + a(4) = 7. %e A228730 a(4) + a(5) = 9. %e A228730 a(5) + a(6) = 11. %e A228730 a(6) + a(7) = 22. %e A228730 a(7) + a(8) = 33. %o A228730 (Perl) See Link section. %o A228730 (PARI) {a=0;u=0; for(n=1, 99, u+=1<<a; print1(a", "); for(k=1, 9e9, !bittest(u, k)&&is_A002113(a+k)&&(a=k)&&next(2)))} \\ _M. F. Hasler_, Nov 09 2013 %o A228730 (Python) %o A228730 from itertools import islice %o A228730 def ispal(n): s = str(n); return s == s[::-1] %o A228730 def agen(): # generator of terms %o A228730 aset, an, mink = {0}, 0, 1 %o A228730 yield 0 %o A228730 while True: %o A228730 k = mink %o A228730 while k in aset or not ispal(an + k): k += 1 %o A228730 an = k; aset.add(an); yield an %o A228730 while mink in aset: mink += 1 %o A228730 print(list(islice(agen(), 70))) # _Michael S. Branicky_, Nov 07 2022 %Y A228730 Cf. A002113, A055266. %Y A228730 Cf. A062932 (strictly increasing variant). %K A228730 nonn,base %O A228730 0,3 %A A228730 _Paul Tek_, Aug 31 2013 %E A228730 a(0)=0 added by _M. F. Hasler_, Nov 15 2013