cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228740 T(n,k) = number of arrays of the median of three adjacent elements of some length n+2 0..k array.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 64, 77, 28, 7, 36, 125, 232, 185, 50, 8, 49, 216, 545, 696, 447, 88, 9, 64, 343, 1096, 1943, 2072, 1071, 156, 10, 81, 512, 1981, 4504, 6797, 6130, 2593, 278, 11, 100, 729, 3312, 9191, 17986, 23627, 18378, 6333, 496, 12, 121
Offset: 1

Views

Author

R. H. Hardin Sep 01 2013

Keywords

Comments

See A228461 for more information about the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
...2....3.....4......5.......6.......7........8........9.......10........11
...4....9....16.....25......36......49.......64.......81......100.......121
...8...27....64....125.....216.....343......512......729.....1000......1331
..16...77...232....545....1096....1981.....3312.....5217.....7840.....11341
..28..185...696...1943....4504....9191....17088....29589....48436.....75757
..50..447..2072...6797...17986...41083....84288...159321...282274....474551
..88.1071..6130..23627...71278..181885...410828...845517..1617004...2913955
.156.2593.18378..83391..287154..819099..2037214..4564455..9418762..18182967
.278.6333.55716.298239.1174282.3749921.10282648.25107493.55950398.115793733

Examples

			Some solutions for n=4 k=4
..1..4..3..2..0..4..2..2..4..1..2..0..0..0..2..1
..2..0..2..0..0..3..3..4..2..2..2..1..2..2..3..4
..1..3..0..0..0..1..0..1..3..1..0..0..2..3..4..4
..3..1..2..1..4..1..1..4..1..2..4..0..2..2..3..3
		

Crossrefs

Row 1 is A000027(n+1)
Row 2 is A000290(n+1)
Row 3 is A000578(n+1)
For other rows, columns and diagonals see A228739-A228744.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3) +a(n-5)
k=2: [order 14]
k=3: [order 26]
k=4: [order 43]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = (2/3)*n^4 + 4*n^3 + (19/3)*n^2 + 4*n + 1
n=5: [polynomial of degree 5]
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]