A228754 T(n,k)=Number of nXk binary arrays with top left element equal to 1 and no two ones adjacent horizontally or antidiagonally.
1, 1, 2, 2, 3, 4, 3, 9, 8, 8, 5, 20, 39, 21, 16, 8, 50, 126, 168, 55, 32, 13, 119, 482, 780, 723, 144, 64, 21, 289, 1712, 4599, 4808, 3111, 377, 128, 34, 696, 6277, 24246, 43862, 29608, 13386, 987, 256, 55, 1682, 22700, 134440, 342207, 418370, 182288, 57597, 2584, 512
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..1..0....1..0..0..1....1..0..0..0....1..0..0..1....1..0..1..0 ..0..0..0..1....1..0..0..0....1..0..0..0....0..1..0..0....1..0..0..1 ..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..1....0..1..0..1 ..0..0..0..1....0..0..0..0....0..1..0..0....0..1..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1347
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2)
k=4: a(n) = 8*a(n-1) -12*a(n-2) +4*a(n-3)
k=5: a(n) = 13*a(n-1) -36*a(n-2) +29*a(n-3) -5*a(n-4) for n>5
k=6: a(n) = 21*a(n-1) -112*a(n-2) +217*a(n-3) -157*a(n-4) +36*a(n-5) for n>6
k=7: [order 7] for n>9
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2) +a(n-3)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -a(n-4)
n=4: [order 8]
n=5: [order 13]
n=6: [order 21]
n=7: [order 34]
Comments