A228760 Least positive integer x such that x and n*x are both differences of fourth powers.
1, 179727600, 80, 1040, 16, 2320, 4080, 236187120, 76960, 240, 17680, 76960, 80, 1040, 1, 1, 15, 65520, 4851120, 224991600, 100880, 1728480, 27120, 1389920, 19578624, 1048560, 240, 2986560, 80, 80, 2465, 11232975, 65, 16, 80, 2320, 12240, 707200, 16, 6560
Offset: 1
Keywords
Examples
For n = 3, 80 = 3^4 - 1^4 and 3*80 = 4^4 - 2^4.
References
- A. Choudhry, Indian J. pure appl. Math. 26(11) (1995), 1057-1061
Links
- Robert Israel and Donovan Johnson, Table of n, a(n) for n = 1..966 (first 205 terms from Robert Israel)
- Tito Piezas II, Is the quartic diophantine equation a^4+n*b^4 = c^4+n*d^4 solvable for any integer n?
Crossrefs
Cf. A152044.
Programs
-
Maple
T:= 10^12; N:= 100; # to get solutions with n*a(n)<=T and n <= N cmax := floor(fsolve('c'^4 - ('c'-1)^4 = T)); S:= {seq(seq(c^4 - a^4, a = ceil((max(0,c^4 - T))^(1/4))..c-1),c=1..cmax)}: for n from 1 to N do B:= S intersect map(`*`,S,n); if B <> {} then A[n]:= min(B)/n; printf("a[%d] = %d\n",n,A[n]); end if end do: # Robert Israel, Sep 02 2013
Comments