cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228764 Decimal expansion of the arc length of Sylvester's Bicorn curve.

This page as a plain text file.
%I A228764 #14 Feb 16 2025 08:33:20
%S A228764 5,0,5,6,5,3,0,0,3,2,1,2,1,2,4,4,9,7,3,2,7,0,1,6,4,8,9,6,6,6,0,4,7,4,
%T A228764 4,6,8,7,8,5,9,0,1,0,6,5,6,5,4,3,7,5,4,9,2,0,1,3,7,4,5,8,0,2,9,8,6,5,
%U A228764 3,3,5,7,6,9,0,4,0,7,5,4,6,0,4,3,8,4,8,9,3,9,1,4,3,6,0,2,8,4,7,1
%N A228764 Decimal expansion of the arc length of Sylvester's Bicorn curve.
%C A228764 The Cartesian equation used here is y^2*(t^2-x^2) = (x^2+2*t*y-t^2)^2, with t=1. The arc length (perimeter) is proportional to the parameter t.
%H A228764 Eric Weisstein, <a href="https://mathworld.wolfram.com/Bicorn.html">Bicorn</a> (MathWorld)
%H A228764 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bicorn">Bicorn</a>
%e A228764 5.056530032121244973270164896660474468785901065654375492013745802986533576904...
%t A228764 digits = 100; y1[x_] := (1 - x^2)/(2 - Sqrt[1 - x^2]); y2[x_] := (1 - x^2)/(2 + Sqrt[1 - x^2]); i1 = NIntegrate[Sqrt[1 + y1'[x]^2], {x, -1, 1}, WorkingPrecision -> digits+5]; i2 = NIntegrate[Sqrt[1 + y2'[x]^2], {x, -1, 1}, WorkingPrecision -> digits+5]; RealDigits[i1 + i2][[1]][[1 ;; digits]]
%K A228764 nonn,cons
%O A228764 1,1
%A A228764 _Jean-François Alcover_, Sep 03 2013