cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228767 Second bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

This page as a plain text file.
%I A228767 #18 Oct 10 2013 11:51:32
%S A228767 -2,-9,-45,-231,-1161,-5643,-26637,-122895,-557073,-2490387,-11010069,
%T A228767 -48234519,-209715225,-905969691,-3892314141,-16642998303,
%U A228767 -70866960417,-300647710755,-1271310319653,-5360119185447,-22539988369449,-94557999988779,-395824185999405
%N A228767 Second bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).
%C A228767 The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
%C A228767 Its first bisection is constituted of fractional numbers, with denominators A176591, whereas this bisection is constituted of integers only.
%C A228767 It appears that a(1) = -2 and a(n) = -1 * A005408(n-1) * A087289(n-2) for n>1.
%F A228767 Conjecture: G.f. -x*(2-11*x+21*x^2-2*x^3+8*x^4)/((1-x)^2*(1-4*x)^2). [_Bruno Berselli_, Sep 03 2013]
%F A228767 Conjecture: a(n) = (8+4^n)*(1-2*n)/8 for n>1, a(1)=-2. [_Bruno Berselli_, Sep 03 2013]
%o A228767 (PARI) fr(n) = if (n==0, 1, (-1)^n*(subst(bernpol(n), x, 1) + subst(bernpol(n), x, 2))/2);
%o A228767 ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
%o A228767 lista(nn) = {forstep(n=1, nn, 2, print1(ibtfr(n), ", "););} \\ _Michel Marcus_, Sep 03 2013
%K A228767 sign
%O A228767 1,1
%A A228767 _Michel Marcus_, following a suggestion of _Paul Curtz_, Sep 03 2013