cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228769 The number of skew sum decomposable permutations which avoid the patterns 3124 and 4312.

This page as a plain text file.
%I A228769 #13 Mar 18 2014 11:10:43
%S A228769 0,1,3,10,35,129,494,1935,7670,30582,122280,489552,1960956,7855994,
%T A228769 31471731,126063782,504888839,2021777865,8094784697,32405289263,
%U A228769 129709206465,519129580361,2077477804103,8313000733125,33261722967167,133076495664483,532391828669675,2129796460981743,8519701993370619,34079469569317323
%N A228769 The number of skew sum decomposable permutations which avoid the patterns 3124 and 4312.
%H A228769 Vincenzo Librandi, <a href="/A228769/b228769.txt">Table of n, a(n) for n = 1..1000</a>
%H A228769 Jay Pantone, <a href="http://arxiv.org/abs/1309.0832">The Enumeration of Permutations Avoiding 3124 and 4312</a>, arXiv:1309.0832 [math.CO], (2013)
%F A228769 G.f.: -(3*x^4 - x^3 + sqrt(-4*x + 1)*(4*x^5 - 9*x^4 + 9*x^3 - 2*x^2))/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1).
%F A228769 a(n) ~ 4^(n-1)/9 * (1 + 1/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 18 2014
%e A228769 Example: a(4)=10 because there are 10 skew sum decomposable permutations of length 4 which avoid the patterns 3124 and 4312.
%t A228769 CoefficientList[Series[- (1/x) (3 x^4 - x^3 + Sqrt[-4 x + 1] (4 x^5 - 9 x^4 + 9 x^3 - 2 x^2)) / (12 x^4 - 31 x^3 + 27 x^2 + Sqrt[-4 x + 1] (4 x^4 - 13 x^3 + 15 x^2 - 7 x + 1) - 9 x + 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 09 2013 *)
%Y A228769 The class of all permutations which avoid the patterns 3124 and 4312 is given by A165534.
%K A228769 nonn
%O A228769 1,3
%A A228769 _Jay Pantone_, Sep 08 2013