cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228770 The number of sum indecomposable permutations which avoid the patterns 3124 and 4312.

This page as a plain text file.
%I A228770 #14 Jun 14 2016 10:27:46
%S A228770 1,1,3,12,51,217,912,3785,15554,63458,257566,1041548,4200462,16906262,
%T A228770 67943341,272740788,1093881967,4384217569,17562176283,70319782015,
%U A228770 281466691159,1126304935761,4505961410365,18023526090613,72082118816829,288245594631227,1152536796877409,4607992736095739,18422141293792669,73645313049839723
%N A228770 The number of sum indecomposable permutations which avoid the patterns 3124 and 4312.
%H A228770 Vincenzo Librandi, <a href="/A228770/b228770.txt">Table of n, a(n) for n = 1..1000</a>
%H A228770 Jay Pantone, <a href="http://arxiv.org/abs/1309.0832">The Enumeration of Permutations Avoiding 3124 and 4312</a>, arXiv:1309.0832 [math.CO], (2013)
%F A228770 G.f.: -(24*x^6 - 71*x^5 + 84*x^4 - 45*x^3 + 11*x^2 + sqrt(-4*x + 1)*(4*x^6 - 25*x^5 + 40*x^4 - 29*x^3 + 9*x^2 - x) - x)/(8*x^6 - 54*x^5 + 117*x^4 - 114*x^3 + 54*x^2 - sqrt(-4*x + 1)*(12*x^5 - 43*x^4 + 58*x^3 - 36*x^2 + 10*x - 1) - 12*x + 1).
%F A228770 a(n) ~ 2^(2*n-1)/9 * (1+2/(sqrt(Pi*n))). - _Vaclav Kotesovec_, Mar 20 2014
%F A228770 Conjecture: -(n+1)*(39961*n-2474598)*a(n) +(-39961*n^2-25975201*n+4949196) *a(n-1) +3*(1460811*n^2+27429105*n-41310802) *a(n-2) +3 *(-8653921*n^2-4750029*n+74360724) *a(n-3) +4*(15005713*n^2-82481258*n+83094771) *a(n-4) +12*(-4937548*n^2+40726604*n-73155719) *a(n-5) +16*(652718*n-2110173)*(2*n-13) *a(n-6)=0. - _R. J. Mathar_, Jun 14 2016
%e A228770 Example: a(4)=12 because there are 12 sum indecomposable permutations of length 4 which avoid the patterns 3124 and 4312.
%t A228770 CoefficientList[Series[- (1/x) (24 x^6 - 71 x^5 + 84 x^4 - 45 x^3 + 11 x^2 + Sqrt[-4 x + 1] (4 x^6 - 25 x^5 + 40 x^4 - 29 x^3 + 9 x^2 - x) - x) / (8 x^6 - 54 x^5 + 117 x^4 - 114 x^3 + 54 x^2 - Sqrt[-4 x + 1] (12 x^5 - 43 x^4 + 58 x^3 - 36 x^2 + 10 x - 1) - 12 x + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Sep 09 2013 *)
%Y A228770 A228770(n) = A165534(n) - A226434(n)
%K A228770 nonn
%O A228770 1,3
%A A228770 _Jay Pantone_, Sep 08 2013