cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228771 The number of skew sum indecomposable permutations which avoid the patterns 3124 and 4312.

This page as a plain text file.
%I A228771 #12 Jun 14 2016 10:30:01
%S A228771 1,1,3,12,53,234,1013,4306,18051,74903,308487,1263393,5152139,
%T A228771 20941298,84897207,343467388,1387244237,5595368133,22543241377,
%U A228771 90739796783,364954106877,1466865660103,5892463315373,23658818086719,94952826295865,380947979933041,1527871081396065,6126157580638517,24557525359295337,98421154766829972
%N A228771 The number of skew sum indecomposable permutations which avoid the patterns 3124 and 4312.
%H A228771 Vincenzo Librandi, <a href="/A228771/b228771.txt">Table of n, a(n) for n = 1..1000</a>
%H A228771 Jay Pantone, <a href="http://arxiv.org/abs/1309.0832">The Enumeration of Permutations Avoiding 3124 and 4312</a>, arXiv:1309.0832 [math.CO], (2013)
%F A228771 G.f.: (8*x^6 - 28*x^5 + 50*x^4 - 35*x^3 + 10*x^2 - sqrt(-4*x + 1)*(6*x^5 - 18*x^4 + 21*x^3 - 8*x^2 + x) - x)/(8*x^5 - 46*x^4 + 71*x^3 - 43*x^2 - sqrt(-4*x + 1)*(12*x^4 - 31*x^3 + 27*x^2 - 9*x + 1) + 11*x - 1).
%F A228771 a(n) ~ 4^(n-1)/3 * (1+1/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F A228771 Conjecture: -163*(n+2)*(4*n-413) *a(n) +(-652*n^2-725425*n-452889) *a(n-1) +5*(14473*n^2+512276*n-443094) *a(n-2) +(-410045*n^2-2408964*n+8429009) *a(n-3) +2*(404156*n^2-1297075*n-1518084)*a(n-4) -8*(29333*n-32490)*(2*n-11)*a(n-5)=0. - _R. J. Mathar_, Jun 14 2016
%e A228771 Example: a(4)=12 because there are 12 skew sum indecomposable permutations of length 4 which avoid the patterns 3124 and 4312.
%t A228771 CoefficientList[Series[(1/x) (8 x^6 - 28 x^5 + 50 x^4 - 35 x^3 + 10 x^2 - Sqrt[-4 x + 1] (6 x^5 - 18 x^4 + 21 x^3 - 8 x^2 + x) - x) / (8 x^5 - 46 x^4 + 71 x^3 - 43 x^2 - Sqrt[-4 x + 1] (12 x^4 - 31 x^3 + 27 x^2 - 9 x + 1) + 11 x - 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Sep 09 2013 *)
%Y A228771 A228771(n) = A165534(n) - A228769(n)
%K A228771 nonn
%O A228771 1,3
%A A228771 _Jay Pantone_, Sep 08 2013
%E A228771 Corrected a(17) by _Vincenzo Librandi_, Sep 09 2013