A228783 Table of coefficients of the algebraic number s(2*l) = 2*sin(Pi/2*l) as a polynomial in powers of rho(2*l) = 2*cos(Pi/(2*l)) if l is even and of rho(l) = 2*cos(Pi/l) if l is odd (reduced version).
2, 0, 1, 1, 0, -3, 0, 1, -1, 1, 0, 4, 0, -1, -1, -1, 1, 0, -7, 0, 14, 0, -7, 0, 1, 2, 1, -1, 0, 8, 0, -18, 0, 8, 0, -1, 1, 2, -3, -1, 1, 0, -8, 0, 6, 0, -1, 0, 0, -1, 3, 3, -4, -1, 1, 0, 12, 0, -67, 0, 96, 0, -52, 0, 12, 0, -1, -2, 3, 1, -1, 0, -15, 0, 140, 0, -378, 0, 450, 0, -275, 0, 90, 0, -15, 0, 1
Offset: 1
Examples
The table a(l,m), with n = 2*l, begins: n, l \m 0 1 2 3 4 5 6 7 8 9 10 11 ... 2 1: 2 4 2: 0 1 6 3: 1 8 4: 0 -3 0 1 10 5: -1 1 12 6: 0 4 0 -1 14 7: -1 -1 1 16 8: 0 -7 0 14 0 -7 0 1 18 9: 2 1 -1 20 10: 0 8 0 -18 0 8 0 -1 22 11: 1 2 -3 -1 1 24 12: 0 -8 0 6 0 -1 0 0 26 13: -1 3 3 -4 -1 1 28 14: 0 12 0 -67 0 96 0 -52 0 12 0 -1 30 15: -2 3 1 -1 ... n = 8, l = 4: s(8) = -3*rho(8) + rho(8)^3 = -3*sqrt(2 + sqrt(2)) + (sqrt(2 + sqrt(2)))^3 = (sqrt(2) - 1)*sqrt(2 + sqrt(2)). n = 10, l = 5: s(10) = -1 + rho(5), where rho(5) = tau = (1 + sqrt(5))/2, the golden section.
Crossrefs
Formula
a(2*L,m) = [x^m](s(4*L,x)(mod C(4*L,x))), with s(4*L,x) = sum((-1)^(L-1-s)*A111125(L-1,s)*x^(2*s+1),s=0..L-1), L >= 1, m =0, ..., delta(4*L)-1, and
Comments