cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228806 Smallest odd number greater than any previous term such that it divides the concatenation of all the previous terms and itself; begin with 1.

Original entry on oeis.org

1, 5, 15, 25, 29, 35, 125, 625, 2125, 2675, 3125, 15625, 20125, 21875, 23975, 24797, 25125, 36875, 47495, 47725, 51875, 53125, 78125, 135475, 390625, 1171875, 1903875, 1928595, 2142375, 2265625, 6617125, 8385625, 8790525, 8807085, 8818575, 10504785
Offset: 1

Views

Author

Robert G. Wilson v, Sep 04 2013

Keywords

Comments

Terms not congruent to 0 (mod 5) are: 1, 29, 24797, 24848081, 91381387, 274144161, ..., .
Terms not congruent to 0 (mod 25) are: 1, 5, 15, 29, 35, 24797, 47495, 1928595, 8807085, 10504785, 24848081, 91381387, 274144161, ..., .

Examples

			a(5) equals 29 because 15152527 (mod 27) == 19, but 15152529 (mod 29) == 0.
		

Crossrefs

Cf. A171785.

Programs

  • Mathematica
    f[s_List] := Block[{k = s[[-1]] + 2, conc = FromDigits[ Flatten@ IntegerDigits@ s]}, While[ Mod[ conc*10^Floor[ Log[10, k] + 1] + k, k] != 0, k += 2]; Append[s, k]]; Nest[f, {1}, 25]