A228806 Smallest odd number greater than any previous term such that it divides the concatenation of all the previous terms and itself; begin with 1.
1, 5, 15, 25, 29, 35, 125, 625, 2125, 2675, 3125, 15625, 20125, 21875, 23975, 24797, 25125, 36875, 47495, 47725, 51875, 53125, 78125, 135475, 390625, 1171875, 1903875, 1928595, 2142375, 2265625, 6617125, 8385625, 8790525, 8807085, 8818575, 10504785
Offset: 1
Examples
a(5) equals 29 because 15152527 (mod 27) == 19, but 15152529 (mod 29) == 0.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..55
Crossrefs
Cf. A171785.
Programs
-
Mathematica
f[s_List] := Block[{k = s[[-1]] + 2, conc = FromDigits[ Flatten@ IntegerDigits@ s]}, While[ Mod[ conc*10^Floor[ Log[10, k] + 1] + k, k] != 0, k += 2]; Append[s, k]]; Nest[f, {1}, 25]
Comments