A228812 Triangle read by rows: T(n,k), n>=1, k>=1, in which row n lists m terms, where m = A055086(n). If k divides n and k < n^(1/2) then T(n,k) = k and T(n,m-k+1) = n/T(n,k). Also, if k^2 = n then T(n,k) = k. Other terms are zeros.
1, 1, 2, 1, 3, 1, 2, 4, 1, 0, 5, 1, 2, 3, 6, 1, 0, 0, 7, 1, 2, 4, 8, 1, 0, 3, 0, 9, 1, 2, 0, 5, 10, 1, 0, 0, 0, 11, 1, 2, 3, 4, 6, 12, 1, 0, 0, 0, 0, 13, 1, 2, 0, 0, 7, 14, 1, 0, 3, 5, 0, 15, 1, 2, 0, 4, 0, 8, 16, 1, 0, 0, 0, 0, 0, 17, 1, 2, 3, 0, 6, 9, 18
Offset: 1
Examples
For n = 60 the 60th row of triangle is [1, 2, 3, 4, 5, 6, 0, 0, 10, 12, 15, 20, 30, 60]. The row length is A055086(60) = 14. The number of zeros is A078152(60) = 2. The number of positive terms is A000005(60) = 12. The positive terms are the divisors of 60. The row sum is A000203(60) = 168. Triangle begins: 1; 1, 2; 1, 3; 1, 2, 4; 1, 0, 5; 1, 2, 3, 6; 1, 0, 0, 7; 1, 2, 4, 8; 1, 0, 3, 0, 9; 1, 2, 0, 5, 10; 1, 0, 0, 0, 11; 1, 2, 3, 4, 6, 12; 1, 0, 0, 0, 0, 13; 1, 2, 0, 0, 7, 14; 1, 0, 3, 5, 0, 15; 1, 2, 0, 4, 0, 8, 16; 1, 0, 0, 0, 0, 0, 17; 1, 2, 3, 0, 6, 9, 18; 1, 0, 0, 0, 0, 0, 19; 1, 2, 0, 4, 5, 0, 10, 20; 1, 0, 3, 0, 0, 7, 0, 21; 1, 2, 0, 0, 0, 0, 11, 22; 1, 0, 0, 0, 0, 0, 0, 23; 1, 2, 3, 4, 6, 8, 12, 24; ...
Comments