A228815 Symmetric triangle, read by rows, related to Fibonacci numbers.
0, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 10, 14, 10, 3, 5, 20, 36, 36, 20, 5, 8, 38, 83, 106, 83, 38, 8, 13, 71, 182, 281, 281, 182, 71, 13, 21, 130, 382, 690, 834, 690, 382, 130, 21, 34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34, 55, 420, 1546, 3586, 5780, 6750
Offset: 0
Examples
Triangle begins : 0 1, 1 1, 2, 1 2, 5, 5, 2 3, 10, 14, 10, 3 5, 20, 36, 36, 20, 5 8, 38, 83, 106, 83, 38, 8 13, 71, 182, 281, 281, 182, 71, 13 21, 130, 382, 690, 834, 690, 382, 130, 21 34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34 55, 420, 1546, 3586, 5780, 6750, 5780, 3586, 1546, 420, 55
Formula
G.f.: x*(1+y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 0, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000045(n), 2*A015518(n), 3*A015524(n), 4*A200069(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..floor(n/2)} T(n-k,k) = A008998(n+1).
Comments