This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228827 #18 Oct 10 2013 11:43:11 %S A228827 1,25,599,4285,15599,169625,33578309,344155,133697983,941417335, %T A228827 1729982389,3184334285,274574499509,2625798955,1611022490371, %U A228827 123951819730625,9814145542783,3453861186955,-25128299959971711973,2945661954537595,-260933954573210488051 %N A228827 Numerators of the first bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1). %C A228827 The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ... %C A228827 It appears that a(n) - A000367(n) is a multiple of A002445(n), and the quotients are 0, 4, 20, 102, 520, 2570, 12300, ... %o A228827 (PARI) fr(n) = {default(seriesprecision, n+1); egf = (x/2)*(exp(-x)+1)/(exp(x)-1);(n)!* polcoeff(egf, n);} %o A228827 ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k)); %o A228827 lista(nn) = {forstep(n = 0, nn, 2, print1(numerator(ibtfr(n)), ", "););} \\ _Michel Marcus_, Sep 06 2013 %Y A228827 Cf. A228767 (other bisection). %K A228827 frac,sign %O A228827 0,2 %A A228827 _Paul Curtz_ & _Michel Marcus_, Sep 06 2013