cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228827 Numerators of the first bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

This page as a plain text file.
%I A228827 #18 Oct 10 2013 11:43:11
%S A228827 1,25,599,4285,15599,169625,33578309,344155,133697983,941417335,
%T A228827 1729982389,3184334285,274574499509,2625798955,1611022490371,
%U A228827 123951819730625,9814145542783,3453861186955,-25128299959971711973,2945661954537595,-260933954573210488051
%N A228827 Numerators of the first bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).
%C A228827 The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
%C A228827 It appears that a(n) - A000367(n) is a multiple of A002445(n), and the quotients are 0, 4, 20, 102, 520, 2570, 12300, ...
%o A228827 (PARI) fr(n) = {default(seriesprecision, n+1); egf = (x/2)*(exp(-x)+1)/(exp(x)-1);(n)!* polcoeff(egf, n);}
%o A228827 ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
%o A228827 lista(nn) = {forstep(n = 0, nn, 2, print1(numerator(ibtfr(n)), ", "););} \\ _Michel Marcus_, Sep 06 2013
%Y A228827 Cf. A228767 (other bisection).
%K A228827 frac,sign
%O A228827 0,2
%A A228827 _Paul Curtz_ & _Michel Marcus_, Sep 06 2013