cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228852 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))/2 ).

This page as a plain text file.
%I A228852 #5 Sep 05 2013 12:46:43
%S A228852 1,1,2,14,382,38344,12990279,14369538529,50897796053428,
%T A228852 572602411324905786,20308462423438736818782,
%U A228852 2261760763404526386241849803,788248543938180828988762846368690,857323841081698966408121705146996762240,2905542652088907570108828021890682181041282730
%N A228852 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))/2 ).
%C A228852 Self-convolution yields A207135.
%e A228852 G.f.: A(x) = 1 + x + 2*x^2 + 14*x^3 + 382*x^4 + 38344*x^5 + 12990279*x^6 +...
%e A228852 where
%e A228852 log(A(x)) = x + 3*x^2/2 + 37*x^3/3 + 1471*x^4/4 + 189751*x^5/5 + 77708973*x^6/6 +...+ A207136(n)/2 * x^n/n +...
%o A228852 (PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m^2, k*(m-k))/2))+x*O(x^n)), n)}
%o A228852 for(n=0, 20, print1(a(n), ", "))
%Y A228852 Cf. A207135, A207136.
%K A228852 nonn
%O A228852 0,3
%A A228852 _Paul D. Hanna_, Sep 05 2013