A228853
Nodes of tree generated as follows: (1,2) is an edge, and if (x,y) is an edge, then (y,y+x) and (y,2y+x) are edges.
Original entry on oeis.org
1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 21, 26, 27, 29, 30, 31, 34, 41, 43, 44, 45, 46, 47, 49, 50, 55, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 79, 80, 81, 89, 97, 99, 100, 101, 104, 105, 106, 108, 109, 111, 112, 115, 116, 117, 119, 121, 123, 128
Offset: 1
Part 1: Taking the first generation of edges of the tree to be G(1) = {(1,2)}, the edge (1,2) grows G(2) = {(2,3), (2,5)}, which grows G(3) = {(3,5), (3,8), (5,7), (5,12)}, ... Expelling duplicate nodes and sorting leave {1, 2, 3, 5, 7, 8, ...}.
Part 2: The branch 2, 3, 8, 11, 19, 30, 49, 128, 305 has edge-labels 1, 2, 1, 1, 1, 1, 2, 2, so that 305/128 = [2, 2, 1, 1, 1, 1, 2, 1, 2].
-
f[x_, y_] := {{y, x + y}, {y, x + 2 y}}; x = 1; y = 2; t = {{x, y}}; u = Table[t = Flatten[Map[Apply[f, #] &, t], 1], {12}]; v = Flatten[u]; w = Flatten[Prepend[Table[v[[2 k]], {k, 1, Length[v]/2}], {x, y}]]; Sort[Union[w]]
A228856
Nodes of tree generated as follows: (1,2) is an edge, and if (x,y) is an edge, then (y,y+x), (y,2y+x), and (y,3y+x) are edges.
Original entry on oeis.org
1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 39, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84
Offset: 1
Taking the first generation of edges of the tree to be G(1) = {(1,2)}, the edge (1,2) grows G(2) = {(2,3), (2,5), (2,7)}, which grows G(3) = {(3,5), (3,8), (3,11), (5,7), (5,12), (5,17), (7,9), (7,16), (7,23)}, ... Expelling duplicate nodes and sorting leave {1,2,3,5,7,8,9,...}.
-
f[x_, y_] := {{y, x + y}, {y, x + 2 y}}; x = 2; y = 3; t = {{x, y}};
u = Table[t = Flatten[Map[Apply[f, #] &, t], 1], {12}]; v = Flatten[u];
w = Flatten[Prepend[Table[v[[2 k]], {k, 1, Length[v]/2}], {x, y}]];
Sort[Union[w]]
A228855
Nodes of tree generated as follows: (2,3) is an edge, and if (x,y) is an edge, then (y,y+x) and (y,2y+x) are edges.
Original entry on oeis.org
2, 3, 5, 8, 11, 13, 18, 19, 21, 27, 29, 30, 31, 34, 41, 44, 46, 47, 49, 50, 55, 65, 67, 68, 71, 73, 75, 76, 79, 80, 81, 89, 100, 101, 106, 108, 109, 111, 112, 115, 116, 117, 119, 121, 123, 128, 129, 131, 144, 153, 157, 163, 165, 166, 171, 172, 173, 175, 176
Offset: 1
Taking the first generation of edges of the tree to be G(1) = {(2,3)}, the edge (2,3) grows G(2) = {(3,5), (3,8)}, which grows G(3) = {(5,8), (5,13), (8,11),(8,19)}, ... Expelling duplicate nodes and sorting leave {2,3,5,8,11,13,...}.
-
f[x_, y_] := {{y, x + y}, {y, x + 2 y}}; x = 2; y = 3; t = {{x, y}};
u = Table[t = Flatten[Map[Apply[f, #] &, t], 1], {12}]; v = Flatten[u];
w = Flatten[Prepend[Table[v[[2 k]], {k, 1, Length[v]/2}], {x, y}]];
Sort[Union[w]]
Showing 1-3 of 3 results.
Comments