cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.

This page as a plain text file.
%I A228859 #15 Mar 27 2020 13:56:08
%S A228859 1,1,1,3,3,1,19,15,6,1,195,125,45,10,1,3031,1545,480,105,15,1,67263,
%T A228859 27307,7035,1400,210,21,1,2086099,668367,140098,24045,3430,378,28,1,
%U A228859 89224635,22427001,3746925,536214,68355,7434,630,36,1
%N A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n.
%C A228859 The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 21 2016
%F A228859 E.g.f.: sqrt(A(x)^y) where A(x) is the e.g.f. for A047863.
%F A228859 Sum_{k=1..n} T(n,k)*2^k = A047863(n).
%e A228859 1,
%e A228859 1, 1,
%e A228859 3, 3, 1,
%e A228859 19, 15, 6, 1,
%e A228859 195, 125, 45, 10, 1,
%e A228859 3031, 1545, 480, 105, 15, 1,
%t A228859 nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid
%o A228859 (Sage) # uses[bell_matrix from A264428, A001832]
%o A228859 # Adds 1,0,0,0,... as column 0 to the triangle.
%o A228859 bell_matrix(lambda n: A001832(n+1), 8) # _Peter Luschny_, Jan 21 2016
%Y A228859 Row sums are A047864.
%Y A228859 Column 1 is A001832.
%Y A228859 Cf. A047863.
%K A228859 nonn,tabl
%O A228859 1,4
%A A228859 _Geoffrey Critzer_, Sep 05 2013