This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228859 #15 Mar 27 2020 13:56:08 %S A228859 1,1,1,3,3,1,19,15,6,1,195,125,45,10,1,3031,1545,480,105,15,1,67263, %T A228859 27307,7035,1400,210,21,1,2086099,668367,140098,24045,3430,378,28,1, %U A228859 89224635,22427001,3746925,536214,68355,7434,630,36,1 %N A228859 Triangular array read by rows. T(n,k) is the number of labeled bipartite graphs on n nodes having exactly k connected components; n>=1, 1<=k<=n. %C A228859 The Bell transform of A001832(n+1) (without column 0). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 21 2016 %F A228859 E.g.f.: sqrt(A(x)^y) where A(x) is the e.g.f. for A047863. %F A228859 Sum_{k=1..n} T(n,k)*2^k = A047863(n). %e A228859 1, %e A228859 1, 1, %e A228859 3, 3, 1, %e A228859 19, 15, 6, 1, %e A228859 195, 125, 45, 10, 1, %e A228859 3031, 1545, 480, 105, 15, 1, %t A228859 nn=9;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Drop[Range[0,nn]!CoefficientList[Series[Exp[y Log[f[x]]/2],{x,0,nn}],{x,y}],1]]//Grid %o A228859 (Sage) # uses[bell_matrix from A264428, A001832] %o A228859 # Adds 1,0,0,0,... as column 0 to the triangle. %o A228859 bell_matrix(lambda n: A001832(n+1), 8) # _Peter Luschny_, Jan 21 2016 %Y A228859 Row sums are A047864. %Y A228859 Column 1 is A001832. %Y A228859 Cf. A047863. %K A228859 nonn,tabl %O A228859 1,4 %A A228859 _Geoffrey Critzer_, Sep 05 2013