cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228866 G.f.: A(x) = 1 + x*B(x), where B(x) = 1 + x^2*C(x)^2, C(x) = 1 + x^3*D(x)^3, D(x) = 1 + x^4*E(x)^4, ...

This page as a plain text file.
%I A228866 #6 Sep 06 2013 02:36:21
%S A228866 1,1,0,1,0,0,2,0,0,1,6,0,0,6,6,24,0,15,26,48,36,140,120,60,288,279,
%T A228866 600,660,1476,822,2166,2880,5100,7047,6300,14100,21440,30210,30054,
%U A228866 62496,72060,123180,174780,253980,319488,497544,730560,976020,1654856,1997706,3085932,4160740,6426480
%N A228866 G.f.: A(x) = 1 + x*B(x), where B(x) = 1 + x^2*C(x)^2, C(x) = 1 + x^3*D(x)^3, D(x) = 1 + x^4*E(x)^4, ...
%H A228866 Paul D. Hanna, <a href="/A228866/b228866.txt">Table of n, a(n) for n = 0..500</a>
%e A228866 G.f.: A(x) = 1 + x + x^3 + 2*x^6 + x^9 + 6*x^10 + 6*x^13 + 6*x^14 + 24*x^15 +...
%e A228866 where A(x) = 1 + x*B(x),
%e A228866 B(x) = 1 + x^2 + 2*x^5 + x^8 + 6*x^9 + 6*x^12 + 6*x^13 + 24*x^14 +...
%e A228866 B(x) = 1 + x^2*C(x)^2,
%e A228866 C(x) = 1 + x^3 + 3*x^7 + 3*x^11 + 12*x^12 + x^15 + 24*x^16 + 18*x^17 +...
%e A228866 C(x) = 1 + x^3*D(x)^3,
%e A228866 D(x) = 1 + x^4 + 4*x^9 + 6*x^14 + 20*x^15 + 4*x^19 + 60*x^20 + 40*x^21 +...
%e A228866 D(x) = 1 + x^4*E(x)^4,
%e A228866 E(x) = 1 + x^5 + 5*x^11 + 10*x^17 + 30*x^18 + 10*x^23 + 120*x^24 + 75*x^25 +...
%e A228866 E(x) = 1 + x^5*F(x)^5,
%e A228866 F(x) = 1 + x^6 + 6*x^13 + 15*x^20 + 42*x^21 + 20*x^27 + 210*x^28 + 126*x^29 +...
%e A228866 F(x) = 1 + x^6*G(x)^6,
%e A228866 G(x) = 1 + x^7 + 7*x^15 + 21*x^23 + 56*x^24 + 35*x^31 + 336*x^32 + 196*x^33 +...
%e A228866 G(x) = 1 + x^7*H(x)^7,
%e A228866 H(x) = 1 + x^8 + 8*x^17 + 28*x^26 + 72*x^27 + 56*x^35 + 504*x^36 + 288*x^37 +...
%e A228866 ...
%o A228866 (PARI) {a(n)=local(A=1);for(k=1,n,A = 1 + (x*A)^(n-k+1) +x*O(x^n));polcoeff(A,n)}
%o A228866 for(n=0,120,print1(a(n),", "))
%Y A228866 Cf. A108643, A095793.
%K A228866 nonn
%O A228866 0,7
%A A228866 _Paul D. Hanna_, Sep 06 2013