This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228888 #19 Dec 21 2023 11:27:01 %S A228888 10,56,165,364,680,1140,1771,2600,3654,4960,6545,8436,10660,13244, %T A228888 16215,19600,23426,27720,32509,37820,43680,50116,57155,64824,73150, %U A228888 82160,91881,102340,113564,125580,138415,152096,166650,182104,198485,215820,234136,253460 %N A228888 a(n) = binomial(3*n + 2, 3). %H A228888 Vincenzo Librandi, <a href="/A228888/b228888.txt">Table of n, a(n) for n = 1..1000</a> %H A228888 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1). %F A228888 a(n) = binomial(3*n + 2, 3) = 1/6*(3*n)*(3*n + 1)*(3*n + 2). %F A228888 a(-n) = - A006566(n). %F A228888 a(n) = 1/6*A228889(n). %F A228888 G.f.: (10*x + 16*x^2 + x^3)/(1 - x)^4 = 10*x + 56*x^2 + 165*x^3 + .... %F A228888 Sum {n >= 1} 1/a(n) = 9/2 - 3/2*log(3) - 1/2*sqrt(3)*Pi. %F A228888 Sum {n >= 1} (-1)^n/a(n) = 9/2 - 4*log(2) - 1/3*sqrt(3)*Pi. %e A228888 From _Bruno Berselli_, Jun 26 2018: (Start) %e A228888 Including 0, row sums of the triangle: %e A228888 | 0| .................................................................. 0 %e A228888 | 1| 2 3 4 ..................................................... 10 %e A228888 | 5| 6 7 8 9 10 11 ......................................... 56 %e A228888 |12| 13 14 15 16 17 18 19 20 21 ............................ 165 %e A228888 |22| 23 24 25 26 27 28 29 30 31 32 33 34 ................ 364 %e A228888 |35| 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 .... 680 %e A228888 ... %e A228888 in the first column of which we have the pentagonal numbers (A000326). %e A228888 (End) %p A228888 seq(binomial(3*n+2,3), n = 1..38); %t A228888 Table[(Binomial[3 n + 2, 3]), {n, 1, 40}] (* _Vincenzo Librandi_, Sep 09 2013 *) %o A228888 (Magma) [Binomial(3*n + 2, 3): n in [1..40]]; // _Vincenzo Librandi_, Sep 09 2013 %Y A228888 Cf. A006566 (binomial(3*n,3)) and A228887 (binomial(3*n + 1,3)). %Y A228888 Cf. A228889. %Y A228888 Similar sequences are listed in A316224. %K A228888 nonn,easy %O A228888 1,1 %A A228888 _Peter Bala_, Sep 09 2013