This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228912 #38 Oct 11 2017 05:10:07 %S A228912 0,0,0,0,0,0,0,0,0,362880,19958400,618710400,14270256000,273158645760, %T A228912 4595022432000,70309810771200,1000944296352000,13467262000832640, %U A228912 173201547619900800,2147373231974006400,25832386565857872000,303056981918271947520,3481253462769108364800 %N A228912 a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1. %C A228912 Calculates the tenth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y = 1/[1+exp(-x)]. %H A228912 Seiichi Manyama, <a href="/A228912/b228912.txt">Table of n, a(n) for n = 0..1000</a> %H A228912 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800). %F A228912 G.f.: 362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - _Colin Barker_, Sep 20 2013 %F A228912 E.g.f.: Sum_{k=1..10} (-1)^(10-k)*binomial(10-1,k-1)*exp(k*x). - _Wolfdieter Lang_, May 03 2017 %t A228912 Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 16 2014 *) %t A228912 Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 16 2014 *) %t A228912 CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 16 2014 after _Colin Barker_ *) %o A228912 (PARI) a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1 %Y A228912 Tenth column of results of A163626. %Y A228912 Essentially 362880*A049435. %Y A228912 Cf. A228910 (with more crossrefs), A228911. %K A228912 nonn,easy %O A228912 0,10 %A A228912 _Richard V. Scholtz, III_, Sep 07 2013 %E A228912 Offset corrected by _Vaclav Kotesovec_, Dec 16 2014