This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228913 #35 May 03 2017 18:49:54 %S A228913 0,0,0,0,0,0,0,0,0,0,3628800,239500800,8821612800,239740300800, %T A228913 5368729766400,105006251750400,1858166876966400,30449278610150400, %U A228913 469614684719980800,6897777008118796800,97349279409046828800,1329165939158093836800,17651395149921751680000 %N A228913 a(n) = 11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1. %C A228913 Calculates the eleventh column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)]. %H A228913 Seiichi Manyama, <a href="/A228913/b228913.txt">Table of n, a(n) for n = 0..960</a> %H A228913 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (66, -1925, 32670, -357423, 2637558, -13339535, 45995730, -105258076, 150917976, -120543840, 39916800). %F A228913 G.f.: -3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)). - _Colin Barker_, Sep 20 2013 %F A228913 E.g.f.: Sum_{k=1..11} (-1)^(11-k)*binomial(11-1,k-1)*exp(k*x). - _Wolfdieter Lang_, May 03 2017 %t A228913 Table[10!*StirlingS2[n+1, 11], {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 16 2014 *) %t A228913 CoefficientList[Series[-3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 16 2014 *) %t A228913 Table[11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1, {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 16 2014 *) %t A228913 LinearRecurrence[{66,-1925,32670,-357423,2637558,-13339535,45995730,-105258076,150917976,-120543840,39916800},{0,0,0,0,0,0,0,0,0,0,3628800},30] (* _Harvey P. Dale_, Mar 20 2017 *) %o A228913 (PARI) a(n)=11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1 %Y A228913 Eleventh column of results of A163626. %Y A228913 Cf. A228910 (with more cf.s), A228911, A228912. %K A228913 nonn,easy %O A228913 0,11 %A A228913 _Richard V. Scholtz, III_, Sep 07 2013 %E A228913 Offset corrected by _Vaclav Kotesovec_, Dec 16 2014