This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228915 #27 Mar 18 2022 13:17:10 %S A228915 10,11,12,13,14,15,16,17,18,100,20,21,22,23,24,25,26,27,28,101,30,31, %T A228915 32,33,34,35,36,37,38,102,40,41,42,43,44,45,46,47,48,103,50,51,52,53, %U A228915 54,55,56,57,58,104,60,61,62,63,64,65,66,67,68,105,70,71,72 %N A228915 Next larger integer with same digital sum (that is, sum of digits in base 10) as n. %C A228915 This is a variant of A057168 for the base 10. %C A228915 All integers except those in A051885 appear in this sequence. %C A228915 n+9 <= a(n) <= 10*n, for any n > 0. %C A228915 a(n)-n is a multiple of 9, for any n > 0. %H A228915 Paul Tek, <a href="/A228915/b228915.txt">Table of n, a(n) for n = 1..10000</a> %H A228915 Paul Tek, <a href="/A228915/a228915.txt">PARI program for this sequence</a> %e A228915 To compute a(n): %e A228915 (1) Choose the rightmost digit D of n strictly less than 9 and with at least one nonzero digit after it (note that D may be a leading zero), %e A228915 (2) Increment D, %e A228915 (3) Replace the digits after D by A051885((sum of the digits after D) - 1), left padded with zeros. %e A228915 For n = 2930: %e A228915 (1) We choose the 4th digit, %e A228915 (2) We increment the 4th digit, %e A228915 (3) We replace the last 3 digits with "029" (= A051885((9+3+0)-1) left padded with zeros to 3 digits). %e A228915 Hence, a(2930) = 3029. %t A228915 nli[n_]:=Module[{k=n+1,s=Total[IntegerDigits[n]]},While[Total[ IntegerDigits[ k]] !=s, k++]; k]; Array[nli,70] (* _Harvey P. Dale_, Sep 27 2016 *) %o A228915 (PARI) See Link section. %o A228915 (PARI) A228915(n,p=1,d,r)={while(8<(d=n%10) || !r, n\=10; r+=d; p*=10); n*p+p+A051885(r-1)} \\ (Based on the above program.) - _M. F. Hasler_, Mar 15 2022 %o A228915 (Python) %o A228915 def A228915(n): %o A228915 p = r = 0 %o A228915 while True: %o A228915 d = n % 10 %o A228915 if d < 9 and r: return (n+1)*10**p+A051885(r-1) %o A228915 n //= 10; r += d; p += 1 %o A228915 # (Based on Tek's PARI program.) - _M. F. Hasler_, Mar 15 2022 %Y A228915 Cf. A007953, A051885, A057168. %K A228915 base,nonn %O A228915 1,1 %A A228915 _Paul Tek_, Sep 08 2013