A228965
Smallest sets of 8 consecutive abundant numbers in arithmetic progression. The initial abundant number is listed.
Original entry on oeis.org
221355126, 402640540, 668862580, 739577140
Offset: 1
221355126, 221355128, 221355130, 221355132, 221355134, 221355136, 221355138, 221355140 is the smallest set of 8 consecutive abundant numbers in arithmetic progression so 221355126 is in the list.
-
AbundantQ[n_] := DivisorSigma[1, n] > 2 n; m = 2; z1 = 18; cd = 6; a = {}; Do[If[AbundantQ[n], If[n - z1 == cd, m = m + 1; If[m > 7, AppendTo[a, n - 7*cd]], m = 2; cd = n - z1]; z1 = n], {n, 19, 1000000000}]; a
A231629
First of 7 consecutive deficient numbers in arithmetic progression.
Original entry on oeis.org
801339, 962649, 7353339, 21964299, 41642139, 48049689, 55455939, 89034939, 89851449, 92253849, 105259539, 107948379, 109455339, 114295449, 116754939, 122349369, 135575979, 156009849, 159521049, 173645439, 188586699, 192674169, 193137849, 220301769, 221355125
Offset: 1
801339, 801341, 801343, 801345, 801347, 801349, 801351 is the smallest set of 7 consecutive deficient numbers in arithmetic progression so 801339 is in the list.
-
DefQ[n_] := DivisorSigma[1, n] < 2 n; m = 2; z1 = 2; cd = 1; a = {}; Do[If[DefQ[n], If[n - z1 == cd, m = m + 1; If[m > 6, AppendTo[a, n - 6*cd]], m = 2; cd = n - z1]; z1 = n], {n, 3, 1000000000}]; a
Showing 1-2 of 2 results.
Comments