A228969 Triangle of numerators of the coefficients t(n,k) in the formula B(2n) = -sum_{k=1..n-1} t(n,k)*B(2k)*B(2n-2k), where the B() are the even-indexed Bernoulli numbers.
6, 5, 25, 28, 70, 588, 45, 1050, 4410, 3825, 22, 165, 924, 2805, 7502, 91, 5005, 63063, 255255, 341341, 124215, 24, 1820, 168168, 12870, 2730728, 496860, 131064, 17, 1700, 6188, 413270, 1657942, 402220, 1856740, 371365
Offset: 2
Examples
6/5; 5/7, 25/7; 28/85, 70/17, 588/85; 45/341, 1050/341, 4410/341, 3825/341; ...
References
- George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 100.
Links
- Jean-François Alcover, Table of n, a(n) for n = 2..105
Crossrefs
Cf. A228970 (denominators).
Programs
-
Mathematica
Table[(2^(2*k) - 1)/(2^(2*n) - 1)* Binomial[2*n, 2*k], {n, 2, 9}, {k, 1, n-1}] // Flatten // Numerator