cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228994 Total sum of the 4th powers of lengths of ascending runs in all permutations of [n].

This page as a plain text file.
%I A228994 #15 Dec 20 2020 07:34:49
%S A228994 0,1,18,152,1110,8254,66050,578466,5557246,58381646,667481754,
%T A228994 8262618730,110195259446,1576108225446,24075493095346,391282065519074,
%U A228994 6742907753730030,122830141805635966,2358555332361509066,47617194132209848026,1008436738991020480294
%N A228994 Total sum of the 4th powers of lengths of ascending runs in all permutations of [n].
%H A228994 Alois P. Heinz, <a href="/A228994/b228994.txt">Table of n, a(n) for n = 0..200</a>
%F A228994 E.g.f.: (exp(x)*(12*x^2-12*x+14)-x-14)/(x-1)^2.
%F A228994 a(n) ~ n! * (14*exp(1)-15)*n. - _Vaclav Kotesovec_, Sep 12 2013
%p A228994 a:= proc(n) option remember; `if`(n<3, [0, 1, 18][n+1],
%p A228994       ((12*n^3-42*n^2+38*n+7)*a(n-1)-(n-1)*(6*n^3-12*n^2+n+14)*a(n-2)
%p A228994        +(n-1)*(n-2)*(6*n^2-12*n+7)*a(n-3))/(6*n^2-24*n+25))
%p A228994     end:
%p A228994 seq(a(n), n=0..30);
%t A228994 a[n_] := With[{k = 4}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];
%t A228994 a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ in A229001 *)
%Y A228994 Column k=4 of A229001.
%K A228994 nonn
%O A228994 0,3
%A A228994 _Alois P. Heinz_, Sep 10 2013