cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228995 Total sum of the 5th powers of lengths of ascending runs in all permutations of [n].

This page as a plain text file.
%I A228995 #15 Dec 20 2020 07:34:06
%S A228995 0,1,34,378,3186,25620,214410,1930080,18881250,200907060,2318843370,
%T A228995 28914797640,387867845250,5573855579340,85476008430090,
%U A228995 1393770581296320,24086416578328290,439832565550644900,8463528886854858090,171191360282164168440,3631513434281720800770
%N A228995 Total sum of the 5th powers of lengths of ascending runs in all permutations of [n].
%H A228995 Alois P. Heinz, <a href="/A228995/b228995.txt">Table of n, a(n) for n = 0..200</a>
%F A228995 E.g.f.: (exp(x)*(20*x^3+30*x-30)+x+30)/(x-1)^2.
%F A228995 a(n) ~ n! * (20*exp(1)+31)*n. - _Vaclav Kotesovec_, Sep 12 2013
%p A228995 a:= proc(n) option remember; `if`(n<4, [0, 1, 34, 378][n+1],
%p A228995       ((2*n^2-4*n+6)*a(n-1) -(n^3-3*n^2+13*n-10)*a(n-2)
%p A228995       +2*(2*n-1)*(n-2)*a(n-3) +(n-3)*(n-2)^2*a(n-4)) /(n-2))
%p A228995     end:
%p A228995 seq(a(n), n=0..30);
%t A228995 a[n_] := With[{k = 5}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];
%t A228995 a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ in A229001 *)
%Y A228995 Column k=5 of A229001.
%K A228995 nonn
%O A228995 0,3
%A A228995 _Alois P. Heinz_, Sep 10 2013