This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228998 #17 Sep 13 2013 19:56:10 %S A228998 0,1,258,7592,110310,1217374,12263090,123349746,1293790126, %T A228998 14422297646,172035525354,2198386222330,30052681253126, %U A228998 438421632024006,6806217982912546,112117997189378354,1954283594806071390,35949546988844228446,696172911589097791706 %N A228998 Total sum of the 8th powers of lengths of ascending runs in all permutations of [n]. %C A228998 Generally, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. Set k=8 for this sequence. - _Vaclav Kotesovec_, Sep 12 2013 %H A228998 Alois P. Heinz, <a href="/A228998/b228998.txt">Table of n, a(n) for n = 0..200</a> %F A228998 a(n) ~ n! * (2914*exp(1)-255)*n. - _Vaclav Kotesovec_, Sep 12 2013 %p A228998 a:= proc(n) option remember; `if`(n<3, [0, 1, 258][n+1], %p A228998 ((56*n^7-644*n^6+3332*n^5-9590*n^4+16016*n^3-14588*n^2 %p A228998 +5546*n+127)*a(n-1) -(n-1)*(28*n^7-280*n^6+1414*n^5 %p A228998 -4060*n^4+6748*n^3-5992*n^2+2017*n+254)*a(n-2) +(n-1)*(n-2)* %p A228998 (28*n^6-168*n^5+490*n^4-840*n^3+868*n^2-504*n+127)*a(n-3))/ %p A228998 (28*n^6-336*n^5+1750*n^4-5040*n^3+8428*n^2-7728*n+3025)) %p A228998 end: %p A228998 seq(a(n), n=0..30); %t A228998 k=8; Table[n^k+Sum[t^k*n!*(n*(t^2+t-1)-t*(t^2-4)+1)/(t+2)!+Floor[t/n]*(1/(t*(t+3)+2)),{t,1,n-1}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 12 2013 *) %Y A228998 Column k=8 of A229001. %K A228998 nonn %O A228998 0,3 %A A228998 _Alois P. Heinz_, Sep 10 2013