cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228998 Total sum of the 8th powers of lengths of ascending runs in all permutations of [n].

This page as a plain text file.
%I A228998 #17 Sep 13 2013 19:56:10
%S A228998 0,1,258,7592,110310,1217374,12263090,123349746,1293790126,
%T A228998 14422297646,172035525354,2198386222330,30052681253126,
%U A228998 438421632024006,6806217982912546,112117997189378354,1954283594806071390,35949546988844228446,696172911589097791706
%N A228998 Total sum of the 8th powers of lengths of ascending runs in all permutations of [n].
%C A228998 Generally, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. Set k=8 for this sequence. - _Vaclav Kotesovec_, Sep 12 2013
%H A228998 Alois P. Heinz, <a href="/A228998/b228998.txt">Table of n, a(n) for n = 0..200</a>
%F A228998 a(n) ~ n! * (2914*exp(1)-255)*n. - _Vaclav Kotesovec_, Sep 12 2013
%p A228998 a:= proc(n) option remember; `if`(n<3, [0, 1, 258][n+1],
%p A228998       ((56*n^7-644*n^6+3332*n^5-9590*n^4+16016*n^3-14588*n^2
%p A228998        +5546*n+127)*a(n-1) -(n-1)*(28*n^7-280*n^6+1414*n^5
%p A228998        -4060*n^4+6748*n^3-5992*n^2+2017*n+254)*a(n-2) +(n-1)*(n-2)*
%p A228998       (28*n^6-168*n^5+490*n^4-840*n^3+868*n^2-504*n+127)*a(n-3))/
%p A228998       (28*n^6-336*n^5+1750*n^4-5040*n^3+8428*n^2-7728*n+3025))
%p A228998     end:
%p A228998 seq(a(n), n=0..30);
%t A228998 k=8; Table[n^k+Sum[t^k*n!*(n*(t^2+t-1)-t*(t^2-4)+1)/(t+2)!+Floor[t/n]*(1/(t*(t+3)+2)),{t,1,n-1}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 12 2013 *)
%Y A228998 Column k=8 of A229001.
%K A228998 nonn
%O A228998 0,3
%A A228998 _Alois P. Heinz_, Sep 10 2013