cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229000 Total sum of the 10th powers of lengths of ascending runs in all permutations of [n].

This page as a plain text file.
%I A229000 #20 Jan 06 2022 14:37:29
%S A229000 0,1,1026,63152,1424406,20708542,247753826,2770103322,31016696398,
%T A229000 360474871982,4422094936842,57643276901506,799742156488022,
%U A229000 11800984833241638,184874578304981362,3068030670168269402,53807082887654595486,994936476288108004702
%N A229000 Total sum of the 10th powers of lengths of ascending runs in all permutations of [n].
%C A229000 Generally, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j) *C(k,j))) *exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. Set k=10 for this sequence. - _Vaclav Kotesovec_, Sep 12 2013
%H A229000 Alois P. Heinz, <a href="/A229000/b229000.txt">Table of n, a(n) for n = 0..200</a>
%F A229000 a(n) ~ n! * (83342*exp(1)-1023)*n. - _Vaclav Kotesovec_, Sep 12 2013
%p A229000 a:= proc(n) option remember; `if`(n<5, [0, 1, 1026, 63152,
%p A229000       1424406][n+1], ((398*n^3-539*n^2-4964*n+24377)*a(n-1)
%p A229000       -(199*n^4+1057*n^3-12543*n^2+57436*n-31692)*a(n-2)
%p A229000       +(1017*n^4-7565*n^3+34942*n^2-38827*n-17617)*a(n-3)
%p A229000       -(n-3)*(1017*n^3-5258*n^2+21882*n-30370)*a(n-4)
%p A229000       +(n-3)*(n-4)*(199*n^2-1212*n+1877)*a(n-5))/
%p A229000       (199*n^2-778*n+792))
%p A229000     end:
%p A229000 seq(a(n), n=0..30);
%t A229000 k=10; Table[n^k+Sum[t^k*n!*(n*(t^2+t-1)-t*(t^2-4)+1)/(t+2)!+Floor[t/n]*(1/(t*(t+3)+2)),{t,1,n-1}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 12 2013 *)
%Y A229000 Column k=10 of A229001.
%K A229000 nonn
%O A229000 0,3
%A A229000 _Alois P. Heinz_, Sep 10 2013