This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229001 #20 Dec 27 2013 07:52:58 %S A229001 0,0,1,0,1,3,0,1,4,12,0,1,6,18,60,0,1,10,32,96,360,0,1,18,66,186,600, %T A229001 2520,0,1,34,152,426,1222,4320,20160,0,1,66,378,1110,2964,9086,35280, %U A229001 181440,0,1,130,992,3186,8254,22818,75882,322560,1814400 %N A229001 Total sum A(n,k) of the k-th powers of lengths of ascending runs in all permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A229001 Alois P. Heinz, <a href="/A229001/b229001.txt">Rows n = 0..140, flattened</a> %F A229001 A(n,k) = Sum_{t=1..n} t^k * A122843(n,t). %F A229001 For fixed k, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. - _Vaclav Kotesovec_, Sep 12 2013 %e A229001 A(3,2) = 32 = 9+5+5+5+5+3 = 3^2+4*(2^2+1^2)+3*1^2: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). %e A229001 Square array A(n,k) begins: %e A229001 : 0, 0, 0, 0, 0, 0, 0, ... %e A229001 : 1, 1, 1, 1, 1, 1, 1, ... %e A229001 : 3, 4, 6, 10, 18, 34, 66, ... %e A229001 : 12, 18, 32, 66, 152, 378, 992, ... %e A229001 : 60, 96, 186, 426, 1110, 3186, 9846, ... %e A229001 : 360, 600, 1222, 2964, 8254, 25620, 86782, ... %e A229001 : 2520, 4320, 9086, 22818, 66050, 214410, 765506, ... %p A229001 A:= (n, k)-> add(`if`(n=t, 1, n!/(t+1)!*(t*(n-t+1)+1 %p A229001 -((t+1)*(n-t)+1)/(t+2)))*t^k, t=1..n): %p A229001 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A229001 A[n_, k_] := Sum[If[n == t, 1, n!/(t + 1)!*(t*(n - t + 1) + 1 - ((t + 1)*(n - t) + 1)/(t + 2))]* t^k, {t, 1, n}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *) %Y A229001 Columns k=0-10 give: A001710(n+1) for n>0, A001563, A228959, A229003, A228994, A228995, A228996, A228997, A228998, A228999, A229000. %Y A229001 Rows n=0-2 give: A000004, A000012, A052548. %Y A229001 Main diagonal gives: A229002. %K A229001 nonn,tabl %O A229001 0,6 %A A229001 _Alois P. Heinz_, Sep 10 2013