cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229004 Indices of Bell numbers divisible by 3.

This page as a plain text file.
%I A229004 #29 Feb 16 2025 08:33:20
%S A229004 4,8,9,11,17,21,22,24,30,34,35,37,43,47,48,50,56,60,61,63,69,73,74,76,
%T A229004 82,86,87,89,95,99,100,102,108,112,113,115,121,125,126,128,134,138,
%U A229004 139,141,147,151,152,154,160,164,165,167,173,177,178,180,186,190,191
%N A229004 Indices of Bell numbers divisible by 3.
%C A229004 a(n) appears to be congruent 4, 8, 9, 11 mod 13. - _Ralf Stephan_, Sep 12 2013
%C A229004 Wagstaff shows that N(p) = (p^p-1)/(p-1) is the period for all primes p < 102, for p=3 then N(3) = A054767(3) = 13, Bell numbers with indices less than or equal to 13 that are divisible by 3 are those with indices: 4, 8, 9, 11, so the conjecture holds. - _Enrique Pérez Herrero_, Sep 12 2013
%H A229004 Vaclav Kotesovec, <a href="/A229004/b229004.txt">Table of n, a(n) for n = 1..15384</a> (terms 1..1200 from Enrique Pérez Herrero)
%H A229004 J. Levine and R. E. Dalton, <a href="http://dx.doi.org/10.1090/S0025-5718-1962-0148604-2">Minimum Periods, Modulo p, of First Order Bell Exponential Integrals</a>, Mathematics of Computation, 16 (1962), 416-423.
%H A229004 Samuel S. Wagstaff Jr., <a href="http://www.ams.org/mcom/1996-65-213/S0025-5718-96-00683-7/home.html">Aurifeuillian factorizations and the period of the Bell numbers modulo a prime</a>, Math. Comp. 65 (1996), 383-391.
%H A229004 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellNumber.html">Bell Number</a>
%F A229004 Conjectures from _Colin Barker_, Jul 16 2014: (Start)
%F A229004 a(n) = a(n-1) + a(n-4) - a(n-5).
%F A229004 G.f.: x*(2*x^4+2*x^3+x^2+4*x+4) / ((x-1)^2*(x+1)*(x^2+1)). (End)
%t A229004 Select[Range[1000], Mod[BellB[#],3] == 0&]
%Y A229004 Cf. A000110, A016789, A155730, A054767.
%K A229004 nonn
%O A229004 1,1
%A A229004 _Enrique Pérez Herrero_, Sep 10 2013