A229006 Number of arrays of median of three adjacent elements of some length n+2 0..2 array, with no adjacent equal elements in the latter.
3, 7, 15, 31, 57, 105, 193, 353, 653, 1209, 2241, 4161, 7719, 14325, 26581, 49311, 91489, 169729, 314881, 584177, 1083761, 2010609, 3730105, 6920121, 12838307, 23817773, 44187025, 81976335, 152083481, 282147169, 523442893, 971097649
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0....1....1....0....0....1....1....2....1....2....0....1....1....2....1....1 ..2....1....2....1....1....0....1....0....1....1....2....1....2....1....1....0 ..1....0....0....1....0....1....1....1....2....1....1....1....0....2....1....1 ..1....1....2....1....1....0....2....0....0....0....2....1....1....1....0....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A229012.
Formula
Empirical: a(n) = 2*a(n-1) - a(n-3) + 2*a(n-5) - a(n-6) + 2*a(n-8) - a(n-9) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13).
Empirical g.f.: x*(3 + x + x^2 + 4*x^3 + 2*x^4 + 3*x^6 + x^7 - x^8 + 2*x^9 - 2*x^11 + 2*x^12) / (1 - 2*x + x^3 - 2*x^5 + x^6 - 2*x^8 + x^9 - 2*x^11 + 2*x^12 - 2*x^13). - Colin Barker, Sep 13 2018