A229008 Number of arrays of median of three adjacent elements of some length n+2 0..4 array, with no adjacent equal elements in the latter.
5, 23, 101, 359, 1145, 3527, 10735, 32907, 101635, 315579, 982305, 3059025, 9524031, 29640801, 92224095, 286910991, 892560177, 2776725201, 8638459639, 26874806287, 83609764417, 260117322353, 809247413805, 2517636208515, 7832571212121
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1....2....3....2....2....3....2....1....0....1....0....2....3....1....0....3 ..2....2....3....3....3....0....0....1....1....4....2....1....1....3....4....2 ..1....0....3....1....1....2....4....2....1....2....1....1....4....2....2....1 ..3....1....1....4....3....1....3....4....1....2....3....0....0....2....2....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..136
Formula
Empirical: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) +7*a(n-4) +35*a(n-5) -47*a(n-6) -9*a(n-7) +106*a(n-8) -43*a(n-9) -123*a(n-10) +248*a(n-11) -30*a(n-12) -255*a(n-13) +370*a(n-14) +13*a(n-15) -396*a(n-16) +484*a(n-17) +88*a(n-18) -609*a(n-19) +715*a(n-20) -62*a(n-21) -603*a(n-22) +830*a(n-23) -305*a(n-24) -450*a(n-25) +825*a(n-26) -580*a(n-27) -91*a(n-28) +586*a(n-29) -678*a(n-30) +304*a(n-31) +130*a(n-32) -423*a(n-33) +364*a(n-34) -103*a(n-35) -83*a(n-36) +176*a(n-37) -111*a(n-38) +25*a(n-39) +37*a(n-40) -32*a(n-41) +17*a(n-42) -2*a(n-43) -4*a(n-44) +2*a(n-45) -a(n-46).
Comments